10
104
(K10a
118
)
A knot diagram
1
Linearized knot diagam
8 6 1 9 10 3 4 2 5 7
Solving Sequence
4,9
5 10
2,6
8 1 3 7
c
4
c
9
c
5
c
8
c
1
c
3
c
7
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
11u
13
+ ··· + 4b 20, 41u
14
+ 221u
13
+ ··· + 8a + 196,
u
15
+ 7u
14
+ 18u
13
+ 20u
12
+ 14u
11
+ 31u
10
+ 55u
9
+ 44u
8
+ 40u
7
+ 54u
6
+ 31u
5
+ 9u
4
+ 7u
3
6u
2
+ 8i
I
u
2
= h109a
5
u
4
+ 90a
4
u
4
+ ··· 83a + 145, 2a
4
u
4
5u
4
a
3
+ ··· 18a 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
3
= h−u
4
+ u
3
+ 2u
2
+ b u, u
6
+ u
5
4u
4
4u
3
+ 3u
2
+ a + 3u + 1, u
7
4u
5
u
4
+ 4u
3
+ 2u
2
1i
* 3 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
14
11u
13
+ · · · + 4b 20, 41u
14
+ 221u
13
+ · · · + 8a +
196, u
15
+ 7u
14
+ · · · 6u
2
+ 8i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
2
=
5.12500u
14
27.6250u
13
+ ··· + 15.5000u 24.5000
1
4
u
14
+
11
4
u
13
+ ···
9
2
u + 5
a
6
=
u
2
+ 1
u
4
2u
2
a
8
=
3u
14
+
33
2
u
13
+ ··· 10u +
31
2
3
2
u
14
+ 7u
13
+ ··· +
1
2
u + 4
a
1
=
8u
14
179
4
u
13
+ ··· +
125
4
u 44
17
4
u
14
+
97
4
u
13
+ ··· 19u + 26
a
3
=
53
8
u
14
+
301
8
u
13
+ ··· 26u +
77
2
15
4
u
14
89
4
u
13
+ ··· +
47
2
u 27
a
7
=
3
2
u
14
+
19
2
u
13
+ ···
21
2
u +
23
2
3
2
u
14
+ 7u
13
+ ··· +
1
2
u + 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
14
+ 59u
13
+ 113u
12
+ 66u
11
+ 54u
10
+ 245u
9
+ 267u
8
+
113u
7
+ 251u
6
+ 241u
5
+ 11u
4
+ 66u
3
7u
2
60u + 74
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
15
+ u
14
+ ··· 3u
3
1
c
3
u
15
12u
14
+ ··· + 240u 32
c
4
, c
5
, c
9
u
15
+ 7u
14
+ ··· 6u
2
+ 8
c
7
, c
10
u
15
3u
13
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
15
9y
14
+ ··· + 4y
2
1
c
3
y
15
4y
14
+ ··· 1280y 1024
c
4
, c
5
, c
9
y
15
13y
14
+ ··· + 96y 64
c
7
, c
10
y
15
6y
14
+ ··· + 13y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.388466 + 0.947688I
a = 0.050943 1.350340I
b = 0.47742 1.71628I
5.82203 + 9.38410I 3.97952 7.17475I
u = 0.388466 0.947688I
a = 0.050943 + 1.350340I
b = 0.47742 + 1.71628I
5.82203 9.38410I 3.97952 + 7.17475I
u = 0.101121 + 0.829275I
a = 0.467120 + 0.846136I
b = 0.108197 + 1.248190I
1.32635 + 1.58430I 2.05695 3.17357I
u = 0.101121 0.829275I
a = 0.467120 0.846136I
b = 0.108197 1.248190I
1.32635 1.58430I 2.05695 + 3.17357I
u = 0.922792 + 0.829091I
a = 0.839212 + 0.446521I
b = 0.265387 + 1.302840I
4.34026 3.41455I 3.26031 + 4.30453I
u = 0.922792 0.829091I
a = 0.839212 0.446521I
b = 0.265387 1.302840I
4.34026 + 3.41455I 3.26031 4.30453I
u = 0.528410 + 0.302526I
a = 0.715576 + 0.595124I
b = 0.246839 0.030877I
1.036950 + 0.848562I 5.31510 2.72513I
u = 0.528410 0.302526I
a = 0.715576 0.595124I
b = 0.246839 + 0.030877I
1.036950 0.848562I 5.31510 + 2.72513I
u = 1.38123 + 0.42191I
a = 0.521626 0.558152I
b = 1.14450 1.53934I
2.89422 6.37595I 2.35312 + 7.90831I
u = 1.38123 0.42191I
a = 0.521626 + 0.558152I
b = 1.14450 + 1.53934I
2.89422 + 6.37595I 2.35312 7.90831I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48635 + 0.07152I
a = 0.098561 0.589973I
b = 0.379744 0.426871I
7.67422 2.17377I 7.19312 + 2.21789I
u = 1.48635 0.07152I
a = 0.098561 + 0.589973I
b = 0.379744 + 0.426871I
7.67422 + 2.17377I 7.19312 2.21789I
u = 1.49023 + 0.36505I
a = 0.758806 + 0.630997I
b = 1.13261 + 1.70886I
0.18522 14.10710I 0.21037 + 7.77333I
u = 1.49023 0.36505I
a = 0.758806 0.630997I
b = 1.13261 1.70886I
0.18522 + 14.10710I 0.21037 7.77333I
u = 1.76149
a = 0.460333
b = 0.363500
5.97579 5.93620
6
II. I
u
2
= h109a
5
u
4
+ 90a
4
u
4
+ · · · 83a + 145, 2a
4
u
4
5u
4
a
3
+ · · · 18a
1, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
2
=
a
0.947826a
5
u
4
0.782609a
4
u
4
+ ··· + 0.721739a 1.26087
a
6
=
u
2
+ 1
u
4
2u
2
a
8
=
a
2
u
1.56522a
5
u
4
0.278261a
4
u
4
+ ··· 0.547826a + 0.973913
a
1
=
a
3
u
2
+ a
0.504348a
5
u
4
1.63478a
4
u
4
+ ··· + 0.556522a 0.278261
a
3
=
1.39130a
5
u
4
+ 0.330435a
4
u
4
+ ··· + 1.71304a + 0.843478
1.23478a
5
u
4
0.678261a
4
u
4
+ ··· + 0.452174a + 0.373913
a
7
=
1.56522a
5
u
4
+ 0.278261a
4
u
4
+ ··· + 0.547826a 0.973913
1.56522a
5
u
4
0.278261a
4
u
4
+ ··· 0.547826a + 0.973913
(ii) Obstruction class = 1
(iii) Cusp Shapes =
232
115
a
5
u
4
+
752
115
a
4
u
4
+ ···
256
115
a
102
115
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
30
u
29
+ ··· 64u 7
c
3
(u
3
+ u
2
1)
10
c
4
, c
5
, c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
6
c
7
, c
10
u
30
3u
29
+ ··· 14u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
30
21y
29
+ ··· 1884y + 49
c
3
(y
3
y
2
+ 2y 1)
10
c
4
, c
5
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
6
c
7
, c
10
y
30
+ 7y
29
+ ··· 116y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.806664 + 0.705849I
b = 0.41170 + 1.41665I
0.49041 + 2.82812I 1.00910 2.97945I
u = 1.21774
a = 0.806664 0.705849I
b = 0.41170 1.41665I
0.49041 2.82812I 1.00910 + 2.97945I
u = 1.21774
a = 1.23353
b = 2.05678
3.64718 7.53840
u = 1.21774
a = 0.671225 + 0.117277I
b = 0.96834 + 1.96626I
0.49041 + 2.82812I 1.00910 2.97945I
u = 1.21774
a = 0.671225 0.117277I
b = 0.96834 1.96626I
0.49041 2.82812I 1.00910 + 2.97945I
u = 1.21774
a = 1.59237
b = 0.582023
3.64718 7.53840
u = 0.309916 + 0.549911I
a = 1.25942 + 0.90741I
b = 0.129260 0.273797I
1.58157 4.35870I 1.97513 + 7.41010I
u = 0.309916 + 0.549911I
a = 1.21172 + 1.02695I
b = 0.218320 + 1.108690I
1.58157 + 1.29754I 1.97513 + 1.45120I
u = 0.309916 + 0.549911I
a = 0.048773 + 0.350100I
b = 0.820174 + 0.651930I
1.58157 + 1.29754I 1.97513 + 1.45120I
u = 0.309916 + 0.549911I
a = 0.37583 1.80799I
b = 0.54889 1.72674I
1.58157 4.35870I 1.97513 + 7.41010I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 + 0.549911I
a = 0.96996 1.69646I
b = 0.67455 1.32965I
5.71916 1.53058I 8.50440 + 4.43065I
u = 0.309916 + 0.549911I
a = 0.47350 + 2.32765I
b = 0.145272 + 1.011820I
5.71916 1.53058I 8.50440 + 4.43065I
u = 0.309916 0.549911I
a = 1.25942 0.90741I
b = 0.129260 + 0.273797I
1.58157 + 4.35870I 1.97513 7.41010I
u = 0.309916 0.549911I
a = 1.21172 1.02695I
b = 0.218320 1.108690I
1.58157 1.29754I 1.97513 1.45120I
u = 0.309916 0.549911I
a = 0.048773 0.350100I
b = 0.820174 0.651930I
1.58157 1.29754I 1.97513 1.45120I
u = 0.309916 0.549911I
a = 0.37583 + 1.80799I
b = 0.54889 + 1.72674I
1.58157 + 4.35870I 1.97513 7.41010I
u = 0.309916 0.549911I
a = 0.96996 + 1.69646I
b = 0.67455 + 1.32965I
5.71916 + 1.53058I 8.50440 4.43065I
u = 0.309916 0.549911I
a = 0.47350 2.32765I
b = 0.145272 1.011820I
5.71916 + 1.53058I 8.50440 4.43065I
u = 1.41878 + 0.21917I
a = 0.837994 + 0.477676I
b = 1.48326 + 1.70876I
3.96189 + 7.22895I 2.25407 6.47803I
u = 1.41878 + 0.21917I
a = 0.265271 0.909026I
b = 0.218527 0.470543I
3.96189 + 7.22895I 2.25407 6.47803I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41878 + 0.21917I
a = 0.772271 0.730462I
b = 0.335807 1.278970I
0.17569 + 4.40083I 4.27520 3.49859I
u = 1.41878 + 0.21917I
a = 0.696565 0.364337I
b = 1.33013 0.90847I
3.96189 + 1.57271I 2.25407 0.51914I
u = 1.41878 + 0.21917I
a = 0.666236 + 0.232053I
b = 0.10143 + 1.90226I
0.17569 + 4.40083I 4.27520 3.49859I
u = 1.41878 + 0.21917I
a = 0.486743 + 0.419449I
b = 0.264664 + 0.140760I
3.96189 + 1.57271I 2.25407 0.51914I
u = 1.41878 0.21917I
a = 0.837994 0.477676I
b = 1.48326 1.70876I
3.96189 7.22895I 2.25407 + 6.47803I
u = 1.41878 0.21917I
a = 0.265271 + 0.909026I
b = 0.218527 + 0.470543I
3.96189 7.22895I 2.25407 + 6.47803I
u = 1.41878 0.21917I
a = 0.772271 + 0.730462I
b = 0.335807 + 1.278970I
0.17569 4.40083I 4.27520 + 3.49859I
u = 1.41878 0.21917I
a = 0.696565 + 0.364337I
b = 1.33013 + 0.90847I
3.96189 1.57271I 2.25407 + 0.51914I
u = 1.41878 0.21917I
a = 0.666236 0.232053I
b = 0.10143 1.90226I
0.17569 4.40083I 4.27520 + 3.49859I
u = 1.41878 0.21917I
a = 0.486743 0.419449I
b = 0.264664 0.140760I
3.96189 1.57271I 2.25407 + 0.51914I
12
III. I
u
3
= h−u
4
+ u
3
+ 2u
2
+ b u, u
6
+ u
5
4u
4
4u
3
+ 3u
2
+ a + 3u +
1, u
7
4u
5
u
4
+ 4u
3
+ 2u
2
1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
2
=
u
6
u
5
+ 4u
4
+ 4u
3
3u
2
3u 1
u
4
u
3
2u
2
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
8
=
u
6
4u
4
2u
3
+ 4u
2
+ 4u + 1
u
6
3u
4
u
3
+ 2u
2
+ u
a
1
=
u
6
+ u
5
3u
4
4u
3
+ 3u + 2
u
3
+ 2u
a
3
=
u
6
u
5
+ 4u
4
+ 4u
3
3u
2
3u
u
6
+ 4u
4
4u
2
a
7
=
u
4
u
3
+ 2u
2
+ 3u + 1
u
6
3u
4
u
3
+ 2u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
+ u
5
+ 3u
4
+ 3u
3
+ 7u
2
5u 8
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
7
u
6
3u
5
+ 3u
4
+ 2u
3
3u
2
u + 1
c
2
, c
8
u
7
+ u
6
3u
5
3u
4
+ 2u
3
+ 3u
2
u 1
c
3
u
7
+ 3u
6
+ 3u
5
u
4
4u
3
2u
2
+ 1
c
4
, c
5
u
7
4u
5
u
4
+ 4u
3
+ 2u
2
1
c
7
, c
10
u
7
+ u
4
2u
3
1
c
9
u
7
4u
5
+ u
4
+ 4u
3
2u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
7
7y
6
+ 19y
5
29y
4
+ 30y
3
19y
2
+ 7y 1
c
3
y
7
3y
6
+ 7y
5
13y
4
+ 6y
3
2y
2
+ 4y 1
c
4
, c
5
, c
9
y
7
8y
6
+ 24y
5
33y
4
+ 20y
3
6y
2
+ 4y 1
c
7
, c
10
y
7
4y
5
y
4
+ 4y
3
+ 2y
2
1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.25920
a = 1.35619
b = 1.39446
2.88904 5.52810
u = 0.401963 + 0.546430I
a = 1.019580 + 0.650467I
b = 0.59726 + 1.44367I
2.11479 + 2.13385I 6.73578 5.40456I
u = 0.401963 0.546430I
a = 1.019580 0.650467I
b = 0.59726 1.44367I
2.11479 2.13385I 6.73578 + 5.40456I
u = 1.346460 + 0.204423I
a = 0.556014 0.539828I
b = 0.21748 1.74792I
1.45010 4.82255I 1.50641 + 5.81707I
u = 1.346460 0.204423I
a = 0.556014 + 0.539828I
b = 0.21748 + 1.74792I
1.45010 + 4.82255I 1.50641 5.81707I
u = 0.552010
a = 2.60549
b = 0.132774
5.57629 7.84920
u = 1.68564
a = 0.322173
b = 0.713207
6.50483 9.77980
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
7
u
6
+ ··· u + 1)(u
15
+ u
14
+ ··· 3u
3
1)
· (u
30
u
29
+ ··· 64u 7)
c
2
, c
8
(u
7
+ u
6
+ ··· u 1)(u
15
+ u
14
+ ··· 3u
3
1)
· (u
30
u
29
+ ··· 64u 7)
c
3
(u
3
+ u
2
1)
10
(u
7
+ 3u
6
+ 3u
5
u
4
4u
3
2u
2
+ 1)
· (u
15
12u
14
+ ··· + 240u 32)
c
4
, c
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)
6
(u
7
4u
5
u
4
+ 4u
3
+ 2u
2
1)
· (u
15
+ 7u
14
+ ··· 6u
2
+ 8)
c
7
, c
10
(u
7
+ u
4
2u
3
1)(u
15
3u
13
+ ··· + u + 1)(u
30
3u
29
+ ··· 14u 1)
c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
6
(u
7
4u
5
+ u
4
+ 4u
3
2u
2
+ 1)
· (u
15
+ 7u
14
+ ··· 6u
2
+ 8)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
7
7y
6
+ 19y
5
29y
4
+ 30y
3
19y
2
+ 7y 1)
· (y
15
9y
14
+ ··· + 4y
2
1)(y
30
21y
29
+ ··· 1884y + 49)
c
3
(y
3
y
2
+ 2y 1)
10
(y
7
3y
6
+ 7y
5
13y
4
+ 6y
3
2y
2
+ 4y 1)
· (y
15
4y
14
+ ··· 1280y 1024)
c
4
, c
5
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
6
· (y
7
8y
6
+ 24y
5
33y
4
+ 20y
3
6y
2
+ 4y 1)
· (y
15
13y
14
+ ··· + 96y 64)
c
7
, c
10
(y
7
4y
5
y
4
+ 4y
3
+ 2y
2
1)(y
15
6y
14
+ ··· + 13y 1)
· (y
30
+ 7y
29
+ ··· 116y + 1)
18