8
4
(K8a
17
)
A knot diagram
1
Linearized knot diagam
6 5 8 7 1 2 4 3
Solving Sequence
2,7
6 1 5 3 4 8
c
6
c
1
c
5
c
2
c
4
c
8
c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
+ u
8
4u
7
3u
6
+ 5u
5
+ u
4
2u
3
+ 2u
2
+ u + 1i
* 1 irreducible components of dim
C
= 0, with total 9 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
9
+ u
8
4u
7
3u
6
+ 5u
5
+ u
4
2u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
4
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
u
8
3u
6
+ u
4
+ 2u
2
+ 1
u
8
4u
6
+ 4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 12u
4
4u
3
8u
2
+ 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1
c
2
u
9
+ 3u
8
+ 2u
7
5u
6
u
5
+ 13u
4
+ 10u
3
2u
2
+ u + 3
c
3
, c
4
, c
7
c
8
u
9
u
8
+ 6u
7
5u
6
+ 11u
5
7u
4
+ 6u
3
2u
2
+ u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1
c
2
y
9
5y
8
+ 32y
7
87y
6
+ 185y
5
223y
4
+ 180y
3
62y
2
+ 13y 9
c
3
, c
4
, c
7
c
8
y
9
+ 11y
8
+ 48y
7
+ 105y
6
+ 121y
5
+ 73y
4
+ 20y
3
6y
2
3y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482242 + 0.666986I
7.06362 + 2.21388I 4.24115 3.04598I
u = 0.482242 0.666986I
7.06362 2.21388I 4.24115 + 3.04598I
u = 1.28056
2.83680 1.66670
u = 1.380230 + 0.162431I
5.16280 + 3.41073I 5.88238 4.39642I
u = 1.380230 0.162431I
5.16280 3.41073I 5.88238 + 4.39642I
u = 0.230908 + 0.456719I
0.035384 1.109690I 0.55374 + 6.23947I
u = 0.230908 0.456719I
0.035384 + 1.109690I 0.55374 6.23947I
u = 1.49128 + 0.23430I
13.4612 5.5005I 7.48937 + 2.97298I
u = 1.49128 0.23430I
13.4612 + 5.5005I 7.48937 2.97298I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1
c
2
u
9
+ 3u
8
+ 2u
7
5u
6
u
5
+ 13u
4
+ 10u
3
2u
2
+ u + 3
c
3
, c
4
, c
7
c
8
u
9
u
8
+ 6u
7
5u
6
+ 11u
5
7u
4
+ 6u
3
2u
2
+ u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1
c
2
y
9
5y
8
+ 32y
7
87y
6
+ 185y
5
223y
4
+ 180y
3
62y
2
+ 13y 9
c
3
, c
4
, c
7
c
8
y
9
+ 11y
8
+ 48y
7
+ 105y
6
+ 121y
5
+ 73y
4
+ 20y
3
6y
2
3y 1
7