12a
1125
(K12a
1125
)
A knot diagram
1
Linearized knot diagam
4 8 7 9 11 12 3 2 1 5 6 10
Solving Sequence
5,10
11 6 12 7 1 9 4 2 3 8
c
10
c
5
c
11
c
6
c
12
c
9
c
4
c
1
c
3
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
50
+ u
49
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
50
+ u
49
+ · · · u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
3
2u
u
5
3u
3
+ u
a
1
=
u
4
3u
2
+ 1
u
4
+ 2u
2
a
9
=
u
8
5u
6
+ 7u
4
2u
2
+ 1
u
8
+ 4u
6
4u
4
a
4
=
u
17
10u
15
+ 39u
13
74u
11
+ 71u
9
38u
7
+ 18u
5
4u
3
+ u
u
17
+ 9u
15
31u
13
+ 50u
11
37u
9
+ 12u
7
4u
5
+ u
a
2
=
u
30
17u
28
+ ··· 2u
2
+ 1
u
30
+ 16u
28
+ ··· 6u
4
+ 3u
2
a
3
=
u
25
14u
23
+ ··· 10u
3
+ u
u
27
15u
25
+ ··· + 3u
3
+ u
a
8
=
u
47
26u
45
+ ··· + 4u
3
2u
u
49
27u
47
+ ··· + 2u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
47
+ 104u
45
+ ··· 4u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
50
13u
49
+ ··· 53u + 3
c
2
, c
3
, c
7
c
8
u
50
u
49
+ ··· + u 1
c
4
u
50
u
49
+ ··· + 35u 29
c
5
, c
6
, c
10
c
11
u
50
+ u
49
+ ··· u 1
c
9
, c
12
u
50
9u
49
+ ··· + 279u 41
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
50
3y
49
+ ··· 187y + 9
c
2
, c
3
, c
7
c
8
y
50
+ 57y
49
+ ··· + y + 1
c
4
y
50
11y
49
+ ··· 11375y + 841
c
5
, c
6
, c
10
c
11
y
50
55y
49
+ ··· + y + 1
c
9
, c
12
y
50
+ 29y
49
+ ··· + 16869y + 1681
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.598747 + 0.574890I
6.17596 9.61051I 8.07514 + 7.89257I
u = 0.598747 0.574890I
6.17596 + 9.61051I 8.07514 7.89257I
u = 0.579767 + 0.568232I
1.46262 + 7.21330I 5.14859 9.60886I
u = 0.579767 0.568232I
1.46262 7.21330I 5.14859 + 9.60886I
u = 0.799600 + 0.134077I
10.62720 + 4.36353I 13.8919 4.2573I
u = 0.799600 0.134077I
10.62720 4.36353I 13.8919 + 4.2573I
u = 0.552380 + 0.559106I
2.72755 3.55040I 1.47416 + 3.94014I
u = 0.552380 0.559106I
2.72755 + 3.55040I 1.47416 3.94014I
u = 0.486892 + 0.584883I
1.98087 + 1.99888I 4.50156 3.58150I
u = 0.486892 0.584883I
1.98087 1.99888I 4.50156 + 3.58150I
u = 0.619098 + 0.438297I
8.73729 0.86802I 11.01246 + 3.92491I
u = 0.619098 0.438297I
8.73729 + 0.86802I 11.01246 3.92491I
u = 0.726133 + 0.110853I
2.87515 2.61799I 12.7473 + 6.4736I
u = 0.726133 0.110853I
2.87515 + 2.61799I 12.7473 6.4736I
u = 0.418082 + 0.569716I
3.12275 0.32958I 0.04870 + 3.38032I
u = 0.418082 0.569716I
3.12275 + 0.32958I 0.04870 3.38032I
u = 0.359261 + 0.608239I
5.47474 + 5.57708I 6.11056 1.82524I
u = 0.359261 0.608239I
5.47474 5.57708I 6.11056 + 1.82524I
u = 0.528151 + 0.466800I
0.81474 + 1.58943I 9.19847 3.59943I
u = 0.528151 0.466800I
0.81474 1.58943I 9.19847 + 3.59943I
u = 0.381969 + 0.589199I
2.04130 3.25118I 3.15587 + 3.30820I
u = 0.381969 0.589199I
2.04130 + 3.25118I 3.15587 3.30820I
u = 0.607541
1.09411 8.24150
u = 1.43710 + 0.11460I
11.13960 3.09747I 0
u = 1.43710 0.11460I
11.13960 + 3.09747I 0
u = 1.46424 + 0.12360I
3.87403 + 0.83702I 0
u = 1.46424 0.12360I
3.87403 0.83702I 0
u = 0.167534 + 0.493668I
7.46565 2.28896I 6.43563 + 2.79578I
u = 0.167534 0.493668I
7.46565 + 2.28896I 6.43563 2.79578I
u = 1.48768 + 0.13710I
3.08950 + 2.74865I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48768 0.13710I
3.08950 2.74865I 0
u = 1.50999 + 0.16213I
8.54473 4.64532I 0
u = 1.50999 0.16213I
8.54473 + 4.64532I 0
u = 1.54653 + 0.13709I
7.79253 3.77307I 0
u = 1.54653 0.13709I
7.79253 + 3.77307I 0
u = 1.54628 + 0.16369I
4.26325 + 6.15786I 0
u = 1.54628 0.16369I
4.26325 6.15786I 0
u = 1.55577 + 0.16994I
5.65936 9.90051I 0
u = 1.55577 0.16994I
5.65936 + 9.90051I 0
u = 1.56928
8.54940 0
u = 1.56295 + 0.17361I
13.3924 + 12.3497I 0
u = 1.56295 0.17361I
13.3924 12.3497I 0
u = 1.56817 + 0.12859I
16.0981 + 2.9477I 0
u = 1.56817 0.12859I
16.0981 2.9477I 0
u = 1.58508 + 0.02052I
10.70660 + 3.03825I 0
u = 1.58508 0.02052I
10.70660 3.03825I 0
u = 1.60009 + 0.02595I
18.7534 4.8844I 0
u = 1.60009 0.02595I
18.7534 + 4.8844I 0
u = 0.135075 + 0.358512I
0.176711 + 1.051470I 3.23682 6.19668I
u = 0.135075 0.358512I
0.176711 1.051470I 3.23682 + 6.19668I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
50
13u
49
+ ··· 53u + 3
c
2
, c
3
, c
7
c
8
u
50
u
49
+ ··· + u 1
c
4
u
50
u
49
+ ··· + 35u 29
c
5
, c
6
, c
10
c
11
u
50
+ u
49
+ ··· u 1
c
9
, c
12
u
50
9u
49
+ ··· + 279u 41
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
50
3y
49
+ ··· 187y + 9
c
2
, c
3
, c
7
c
8
y
50
+ 57y
49
+ ··· + y + 1
c
4
y
50
11y
49
+ ··· 11375y + 841
c
5
, c
6
, c
10
c
11
y
50
55y
49
+ ··· + y + 1
c
9
, c
12
y
50
+ 29y
49
+ ··· + 16869y + 1681
8