12a
1126
(K12a
1126
)
A knot diagram
1
Linearized knot diagam
4 8 7 9 11 12 3 2 1 6 5 10
Solving Sequence
3,7
4 8 2 9 5 1 10 12 6 11
c
3
c
7
c
2
c
8
c
4
c
1
c
9
c
12
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
59
u
58
+ ··· 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
59
u
58
+ · · · 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
2
=
u
2
+ 1
u
2
a
9
=
u
3
+ 2u
u
3
+ u
a
5
=
u
8
+ 5u
6
+ 7u
4
+ 2u
2
+ 1
u
8
+ 4u
6
+ 4u
4
a
1
=
u
4
+ 3u
2
+ 1
u
6
2u
4
+ u
2
a
10
=
u
13
8u
11
23u
9
28u
7
14u
5
4u
3
+ u
u
15
+ 7u
13
+ 16u
11
+ 11u
9
2u
7
+ u
a
12
=
u
22
+ 13u
20
+ ··· + 2u
2
+ 1
u
24
12u
22
+ ··· 8u
6
4u
4
a
6
=
u
45
+ 26u
43
+ ··· + 4u
3
+ u
u
47
25u
45
+ ··· 4u
5
+ u
a
11
=
u
40
23u
38
+ ··· + 2u
2
+ 1
u
40
22u
38
+ ··· 8u
6
4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
58
+ 4u
57
+ ··· 12u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
59
15u
58
+ ··· + 16u 1
c
2
, c
3
, c
7
c
8
u
59
u
58
+ ··· 2u + 1
c
4
u
59
u
58
+ ··· 60u + 29
c
5
, c
10
, c
11
u
59
u
58
+ ··· + u
2
+ 1
c
6
u
59
+ u
58
+ ··· 32u + 185
c
9
, c
12
u
59
9u
58
+ ··· 312u + 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
59
y
58
+ ··· 66y 1
c
2
, c
3
, c
7
c
8
y
59
+ 67y
58
+ ··· 2y 1
c
4
y
59
9y
58
+ ··· + 8762y 841
c
5
, c
10
, c
11
y
59
+ 55y
58
+ ··· 2y 1
c
6
y
59
+ 19y
58
+ ··· 707526y 34225
c
9
, c
12
y
59
+ 47y
58
+ ··· 338y 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.087204 + 0.851478I
5.17243 4.73662I 4.00000 + 2.76071I
u = 0.087204 0.851478I
5.17243 + 4.73662I 4.00000 2.76071I
u = 0.522294 + 0.671217I
7.75645 + 10.78740I 0.55320 8.84457I
u = 0.522294 0.671217I
7.75645 10.78740I 0.55320 + 8.84457I
u = 0.509216 + 0.664867I
1.80756 7.41238I 4.27230 + 9.26004I
u = 0.509216 0.664867I
1.80756 + 7.41238I 4.27230 9.26004I
u = 0.522330 + 0.627830I
8.64971 0.66019I 1.00927 + 3.06229I
u = 0.522330 0.627830I
8.64971 + 0.66019I 1.00927 3.06229I
u = 0.502304 + 0.642574I
2.30495 + 3.34683I 2.71079 3.11364I
u = 0.502304 0.642574I
2.30495 3.34683I 2.71079 + 3.11364I
u = 0.423758 + 0.695721I
1.01542 + 5.69298I 5.32566 8.42870I
u = 0.423758 0.695721I
1.01542 5.69298I 5.32566 + 8.42870I
u = 0.373673 + 0.691083I
3.05801 2.71446I 12.01209 + 6.09741I
u = 0.373673 0.691083I
3.05801 + 2.71446I 12.01209 6.09741I
u = 0.301840 + 0.720122I
0.268239 0.062723I 7.61119 1.27500I
u = 0.301840 0.720122I
0.268239 + 0.062723I 7.61119 + 1.27500I
u = 0.085060 + 0.774106I
0.61920 + 1.71941I 8.31003 3.37529I
u = 0.085060 0.774106I
0.61920 1.71941I 8.31003 + 3.37529I
u = 0.573822 + 0.292341I
9.62917 3.10105I 3.62624 + 3.32555I
u = 0.573822 0.292341I
9.62917 + 3.10105I 3.62624 3.32555I
u = 0.445524 + 0.459511I
5.05128 1.59378I 2.60026 + 4.57588I
u = 0.445524 0.459511I
5.05128 + 1.59378I 2.60026 4.57588I
u = 0.592961 + 0.236270I
9.02899 6.97871I 2.70616 + 3.27231I
u = 0.592961 0.236270I
9.02899 + 6.97871I 2.70616 3.27231I
u = 0.570616 + 0.237617I
3.05307 + 3.70586I 0.77253 3.59782I
u = 0.570616 0.237617I
3.05307 3.70586I 0.77253 + 3.59782I
u = 0.552309 + 0.268389I
3.39541 + 0.29109I 0.41142 3.33717I
u = 0.552309 0.268389I
3.39541 0.29109I 0.41142 + 3.33717I
u = 0.029521 + 1.409530I
4.52945 5.12440I 0
u = 0.029521 1.409530I
4.52945 + 5.12440I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.263506 + 0.518367I
0.175692 + 1.026690I 3.26382 6.43248I
u = 0.263506 0.518367I
0.175692 1.026690I 3.26382 + 6.43248I
u = 0.01406 + 1.42792I
1.64302 + 2.04334I 0
u = 0.01406 1.42792I
1.64302 2.04334I 0
u = 0.490035 + 0.102215I
2.69779 2.53971I 0.68814 + 3.21089I
u = 0.490035 0.102215I
2.69779 + 2.53971I 0.68814 3.21089I
u = 0.08759 + 1.53351I
1.60105 3.31687I 0
u = 0.08759 1.53351I
1.60105 + 3.31687I 0
u = 0.423131
1.20479 7.49580
u = 0.07142 + 1.57608I
7.46190 + 2.18967I 0
u = 0.07142 1.57608I
7.46190 2.18967I 0
u = 0.15017 + 1.57667I
1.23526 3.11687I 0
u = 0.15017 1.57667I
1.23526 + 3.11687I 0
u = 0.14422 + 1.58462I
5.21473 + 5.71673I 0
u = 0.14422 1.58462I
5.21473 5.71673I 0
u = 0.04686 + 1.59696I
8.59473 + 1.10722I 0
u = 0.04686 1.59696I
8.59473 1.10722I 0
u = 0.14844 + 1.59187I
5.81777 9.84244I 0
u = 0.14844 1.59187I
5.81777 + 9.84244I 0
u = 0.15352 + 1.59359I
0.10974 + 13.29100I 0
u = 0.15352 1.59359I
0.10974 13.29100I 0
u = 0.10679 + 1.60050I
10.87520 4.50273I 0
u = 0.10679 1.60050I
10.87520 + 4.50273I 0
u = 0.08882 + 1.60302I
7.65490 + 1.41234I 0
u = 0.08882 1.60302I
7.65490 1.41234I 0
u = 0.12015 + 1.60190I
6.80500 + 7.70998I 0
u = 0.12015 1.60190I
6.80500 7.70998I 0
u = 0.03277 + 1.60858I
3.11395 4.26425I 0
u = 0.03277 1.60858I
3.11395 + 4.26425I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
59
15u
58
+ ··· + 16u 1
c
2
, c
3
, c
7
c
8
u
59
u
58
+ ··· 2u + 1
c
4
u
59
u
58
+ ··· 60u + 29
c
5
, c
10
, c
11
u
59
u
58
+ ··· + u
2
+ 1
c
6
u
59
+ u
58
+ ··· 32u + 185
c
9
, c
12
u
59
9u
58
+ ··· 312u + 17
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
59
y
58
+ ··· 66y 1
c
2
, c
3
, c
7
c
8
y
59
+ 67y
58
+ ··· 2y 1
c
4
y
59
9y
58
+ ··· + 8762y 841
c
5
, c
10
, c
11
y
59
+ 55y
58
+ ··· 2y 1
c
6
y
59
+ 19y
58
+ ··· 707526y 34225
c
9
, c
12
y
59
+ 47y
58
+ ··· 338y 289
8