12a
1127
(K12a
1127
)
A knot diagram
1
Linearized knot diagam
4 8 7 12 11 9 3 2 1 6 5 10
Solving Sequence
3,8
2 9 7 4 1 10 6 11 5 12
c
2
c
8
c
7
c
3
c
1
c
9
c
6
c
10
c
5
c
12
c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
48
+ u
47
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
48
+ u
47
+ · · · + 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
9
=
u
u
3
+ u
a
7
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
6
+ 3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
10
=
u
15
+ 8u
13
+ 24u
11
+ 34u
9
+ 26u
7
+ 14u
5
+ 4u
3
+ 2u
u
15
7u
13
16u
11
11u
9
+ 2u
7
+ 2u
3
+ u
a
6
=
u
5
+ 2u
3
u
u
7
+ 3u
5
+ 2u
3
+ u
a
11
=
u
27
+ 14u
25
+ ··· + u
3
+ 2u
u
29
+ 15u
27
+ ··· + 5u
3
+ u
a
5
=
u
46
+ 25u
44
+ ··· + 4u
2
+ 1
u
46
24u
44
+ ··· + 6u
4
u
2
a
12
=
u
24
+ 13u
22
+ ··· + 4u
2
+ 1
u
24
12u
22
+ ··· + 2u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
47
+ 4u
46
+ ··· + 24u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
9u
47
+ ··· 48u + 17
c
2
, c
3
, c
7
c
8
u
48
u
47
+ ··· 2u + 1
c
4
, c
5
, c
10
c
11
u
48
+ u
47
+ ··· + 2u + 1
c
9
, c
12
u
48
+ 9u
47
+ ··· + 48u + 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
12
y
48
+ 25y
47
+ ··· + 8984y + 289
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
48
+ 53y
47
+ ··· + 8y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.571105 + 0.602504I
7.23980 9.54989I 3.31919 + 7.94832I
u = 0.571105 0.602504I
7.23980 + 9.54989I 3.31919 7.94832I
u = 0.119738 + 0.805469I
2.92614 + 4.24554I 2.30656 4.16682I
u = 0.119738 0.805469I
2.92614 4.24554I 2.30656 + 4.16682I
u = 0.549622 + 0.599161I
6.94310I 0. 9.44534I
u = 0.549622 0.599161I
6.94310I 0. + 9.44534I
u = 0.041579 + 0.787901I
3.70641 1.86423I 6.68982 + 4.28103I
u = 0.041579 0.787901I
3.70641 + 1.86423I 6.68982 4.28103I
u = 0.518355 + 0.592676I
0.74026 3.08667I 2.29165 + 3.31825I
u = 0.518355 0.592676I
0.74026 + 3.08667I 2.29165 3.31825I
u = 0.590762 + 0.488652I
11.79350 2.01666I 7.44353 + 3.51119I
u = 0.590762 0.488652I
11.79350 + 2.01666I 7.44353 3.51119I
u = 0.447929 + 0.612038I
4.96768 + 0.96718I 0.97174 3.83444I
u = 0.447929 0.612038I
4.96768 0.96718I 0.97174 + 3.83444I
u = 0.539062 + 0.483661I
3.70641 + 1.86423I 6.68982 4.28103I
u = 0.539062 0.483661I
3.70641 1.86423I 6.68982 + 4.28103I
u = 0.605762 + 0.352402I
7.97171 + 5.53571I 5.39099 1.87938I
u = 0.605762 0.352402I
7.97171 5.53571I 5.39099 + 1.87938I
u = 0.572553 + 0.344141I
0.74026 3.08667I 2.29165 + 3.31825I
u = 0.572553 0.344141I
0.74026 + 3.08667I 2.29165 3.31825I
u = 0.503120 + 0.331554I
0.502173I 0. + 3.98649I
u = 0.503120 0.331554I
0.502173I 0. 3.98649I
u = 0.10770 + 1.43493I
2.35576 + 3.09747I 0
u = 0.10770 1.43493I
2.35576 3.09747I 0
u = 0.08834 + 1.46597I
4.96768 0.96718I 0
u = 0.08834 1.46597I
4.96768 + 0.96718I 0
u = 0.493520 + 0.181034I
6.17159 + 2.22513I 5.27781 2.91607I
u = 0.493520 0.181034I
6.17159 2.22513I 5.27781 + 2.91607I
u = 0.09667 + 1.51117I
6.17159 2.22513I 0
u = 0.09667 1.51117I
6.17159 + 2.22513I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16565 + 1.51061I
5.22253 4.70180I 0
u = 0.16565 1.51061I
5.22253 + 4.70180I 0
u = 0.14209 + 1.51979I
2.92614 + 4.24554I 0
u = 0.14209 1.51979I
2.92614 4.24554I 0
u = 0.15299 + 1.56328I
7.97171 5.53571I 0
u = 0.15299 1.56328I
7.97171 + 5.53571I 0
u = 0.13250 + 1.56607I
2.35576 + 3.09747I 0
u = 0.13250 1.56607I
2.35576 3.09747I 0
u = 0.16376 + 1.56429I
7.23980 + 9.54989I 0
u = 0.16376 1.56429I
7.23980 9.54989I 0
u = 0.17214 + 1.56466I
12.2713I 0
u = 0.17214 1.56466I
12.2713I 0
u = 0.238363 + 0.325952I
0.778279I 0. + 8.68707I
u = 0.238363 0.325952I
0.778279I 0. 8.68707I
u = 0.00724 + 1.59854I
11.79350 2.01666I 0
u = 0.00724 1.59854I
11.79350 + 2.01666I 0
u = 0.02233 + 1.60119I
5.22253 + 4.70180I 0
u = 0.02233 1.60119I
5.22253 4.70180I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
9u
47
+ ··· 48u + 17
c
2
, c
3
, c
7
c
8
u
48
u
47
+ ··· 2u + 1
c
4
, c
5
, c
10
c
11
u
48
+ u
47
+ ··· + 2u + 1
c
9
, c
12
u
48
+ 9u
47
+ ··· + 48u + 17
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
12
y
48
+ 25y
47
+ ··· + 8984y + 289
c
2
, c
3
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y
48
+ 53y
47
+ ··· + 8y + 1
8