10
108
(K10a
119
)
A knot diagram
1
Linearized knot diagam
8 6 7 9 2 10 1 5 4 3
Solving Sequence
3,7 4,10
1 8 6 2 5 9
c
3
c
10
c
7
c
6
c
2
c
5
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−11u
13
5u
12
+ ··· + 4b + 21, a 1,
u
14
+ 3u
12
u
11
+ 10u
10
2u
9
+ 12u
8
2u
7
+ 12u
6
u
5
+ 5u
4
4u
3
2u + 1i
I
u
2
= h−1.14931 × 10
20
u
23
+ 8.36148 × 10
19
u
22
+ ··· + 1.67024 × 10
21
b + 1.69140 × 10
22
,
7.94884 × 10
24
u
23
+ 4.40832 × 10
25
u
22
+ ··· + 8.43824 × 10
25
a + 2.32671 × 10
27
,
u
24
+ 3u
23
+ ··· + 6u + 19i
I
u
3
= h−u
6
u
5
3u
3
3u
2
+ 2b u + 1, a + 1, u
7
+ u
5
+ u
4
+ 2u
3
1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−11u
13
5u
12
+ · · · + 4b + 21, a 1, u
14
+ 3u
12
+ · · · 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
11
4
u
13
+
5
4
u
12
+ ···
1
4
u
21
4
a
1
=
11
4
u
13
5
4
u
12
+ ··· +
1
4
u +
25
4
11
4
u
13
+
5
4
u
12
+ ···
1
4
u
21
4
a
8
=
7
2
u
13
+ u
12
+ ··· +
1
2
u 6
9
4
u
13
1
4
u
12
+ ···
1
4
u +
13
4
a
6
=
u
5
4
u
13
3
4
u
12
+ ··· +
3
4
u +
11
4
a
2
=
3
4
u
13
1
4
u
12
+ ··· +
1
4
u +
9
4
u
13
+
1
2
u
12
+ ··· + u
7
2
a
5
=
7
4
u
13
7
4
u
12
+ ··· +
5
4
u +
15
4
1
4
u
13
+
1
4
u
12
+ ··· +
3
4
u +
3
4
a
9
=
11
4
u
13
5
4
u
12
+ ··· +
1
4
u +
25
4
7
2
u
13
+
3
2
u
12
+ ···
1
2
u
13
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
63
4
u
13
39
4
u
12
49u
11
61
4
u
10
623
4
u
9
289
4
u
8
781
4
u
7
407
4
u
6
843
4
u
5
125u
4
479
4
u
3
23
4
u
2
+
41
4
u +
111
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
u
14
+ u
13
+ ··· + u + 1
c
3
, c
6
u
14
+ 3u
12
+ ··· + 2u + 1
c
4
, c
8
, c
9
u
14
7u
13
+ ··· 56u + 8
c
10
u
14
13u
13
+ ··· 128u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
y
14
15y
13
+ ··· + 7y + 1
c
3
, c
6
y
14
+ 6y
13
+ ··· 4y + 1
c
4
, c
8
, c
9
y
14
+ 13y
13
+ ··· 32y + 64
c
10
y
14
3y
13
+ ··· 128y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.449224 + 0.834596I
a = 1.00000
b = 1.63158 + 1.27198I
6.03431 1.96052I 7.98588 + 3.63018I
u = 0.449224 0.834596I
a = 1.00000
b = 1.63158 1.27198I
6.03431 + 1.96052I 7.98588 3.63018I
u = 0.078710 + 0.897903I
a = 1.00000
b = 1.17059 1.56821I
13.45690 3.91206I 10.44278 + 2.90737I
u = 0.078710 0.897903I
a = 1.00000
b = 1.17059 + 1.56821I
13.45690 + 3.91206I 10.44278 2.90737I
u = 0.605476 + 0.511603I
a = 1.00000
b = 0.410349 + 0.397635I
1.004190 0.960325I 4.75919 + 2.76007I
u = 0.605476 0.511603I
a = 1.00000
b = 0.410349 0.397635I
1.004190 + 0.960325I 4.75919 2.76007I
u = 0.777537 + 1.051940I
a = 1.00000
b = 0.686906 0.276246I
4.00326 + 3.48344I 0.15043 1.66516I
u = 0.777537 1.051940I
a = 1.00000
b = 0.686906 + 0.276246I
4.00326 3.48344I 0.15043 + 1.66516I
u = 0.803725 + 1.091800I
a = 1.00000
b = 1.43309 0.98357I
6.98628 + 8.54350I 5.70825 6.73218I
u = 0.803725 1.091800I
a = 1.00000
b = 1.43309 + 0.98357I
6.98628 8.54350I 5.70825 + 6.73218I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.497537 + 0.019222I
a = 1.00000
b = 0.118230 + 0.827768I
0.78382 + 1.56236I 0.68409 4.99180I
u = 0.497537 0.019222I
a = 1.00000
b = 0.118230 0.827768I
0.78382 1.56236I 0.68409 + 4.99180I
u = 0.94539 + 1.37947I
a = 1.00000
b = 1.28571 + 0.96390I
14.9753 12.9046I 7.08862 + 6.20783I
u = 0.94539 1.37947I
a = 1.00000
b = 1.28571 0.96390I
14.9753 + 12.9046I 7.08862 6.20783I
6
II. I
u
2
= h−1.15 × 10
20
u
23
+ 8.36 × 10
19
u
22
+ · · · + 1.67 × 10
21
b + 1.69 ×
10
22
, 7.95 × 10
24
u
23
+ 4.41 × 10
25
u
22
+ · · · + 8.44 × 10
25
a + 2.33 ×
10
27
, u
24
+ 3u
23
+ · · · + 6u + 19i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
0.0942002u
23
0.522421u
22
+ ··· 0.770681u 27.5734
0.0688111u
23
0.0500614u
22
+ ··· 0.114391u 10.1267
a
1
=
0.0253891u
23
0.472360u
22
+ ··· 0.656290u 17.4468
0.0688111u
23
0.0500614u
22
+ ··· 0.114391u 10.1267
a
8
=
0.210439u
23
0.295381u
22
+ ··· + 0.388096u 30.0893
0.142257u
23
+ 0.385777u
22
+ ··· + 6.96971u + 1.18135
a
6
=
0.412085u
23
+ 0.307609u
22
+ ··· + 8.81510u 23.1359
0.0593893u
23
+ 0.217213u
22
+ ··· + 3.45729u + 5.77204
a
2
=
1.13112u
23
2.14478u
22
+ ··· 38.0006u + 30.5997
0.121067u
23
0.349984u
22
+ ··· 8.56109u 3.83752
a
5
=
1.76389u
23
5.24938u
22
+ ··· 57.7044u 1.81964
0.503760u
23
1.53601u
22
+ ··· 18.2795u 3.57211
a
9
=
0.0384844u
23
1.08724u
22
+ ··· 3.69662u 32.7422
0.0389677u
23
0.469297u
22
+ ··· 3.63598u 13.2952
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6347129273848677988188136
4441180884722885954957147
u
23
14886253620454834880565064
4441180884722885954957147
u
22
+
···
311699801293938790854796424
4441180884722885954957147
u +
98611701692235728991949218
4441180884722885954957147
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
u
24
u
23
+ ··· + 12u + 1
c
3
, c
6
u
24
3u
23
+ ··· 6u + 19
c
4
, c
8
, c
9
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
6
c
10
(u
3
+ u
2
1)
8
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
y
24
21y
23
+ ··· + 220y + 1
c
3
, c
6
y
24
+ 7y
23
+ ··· + 5436y + 361
c
4
, c
8
, c
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
6
c
10
(y
3
y
2
+ 2y 1)
8
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.527689 + 0.759509I
a = 1.56824 0.01791I
b = 0.877439 + 0.744862I
1.69967 + 4.24323I 2.66351 7.88819I
u = 0.527689 0.759509I
a = 1.56824 + 0.01791I
b = 0.877439 0.744862I
1.69967 4.24323I 2.66351 + 7.88819I
u = 0.076109 + 0.834463I
a = 1.29027 + 0.93223I
b = 0.877439 0.744862I
8.70142 + 0.33584I 6.31698 + 0.41465I
u = 0.076109 0.834463I
a = 1.29027 0.93223I
b = 0.877439 + 0.744862I
8.70142 0.33584I 6.31698 0.41465I
u = 0.448386 + 0.692782I
a = 0.608916 0.502989I
b = 0.877439 + 0.744862I
1.69967 + 1.41302I 2.66351 + 1.92930I
u = 0.448386 0.692782I
a = 0.608916 + 0.502989I
b = 0.877439 0.744862I
1.69967 1.41302I 2.66351 1.92930I
u = 0.384009 + 0.725091I
a = 0.33711 1.83607I
b = 0.754878
5.83725 1.41510I 9.19277 + 4.90874I
u = 0.384009 0.725091I
a = 0.33711 + 1.83607I
b = 0.754878
5.83725 + 1.41510I 9.19277 4.90874I
u = 0.793266 + 0.923818I
a = 1.61039 + 0.28080I
b = 0.877439 0.744862I
8.70142 5.99209I 6.31698 + 5.54425I
u = 0.793266 0.923818I
a = 1.61039 0.28080I
b = 0.877439 + 0.744862I
8.70142 + 5.99209I 6.31698 5.54425I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.090233 + 0.756403I
a = 2.06937 + 2.25178I
b = 0.754878
12.83900 + 3.16396I 12.84625 2.56480I
u = 0.090233 0.756403I
a = 2.06937 2.25178I
b = 0.754878
12.83900 3.16396I 12.84625 + 2.56480I
u = 0.876115 + 1.005730I
a = 0.509213 + 0.367913I
b = 0.877439 + 0.744862I
8.70142 0.33584I 6.31698 0.41465I
u = 0.876115 1.005730I
a = 0.509213 0.367913I
b = 0.877439 0.744862I
8.70142 + 0.33584I 6.31698 + 0.41465I
u = 0.075432 + 0.647379I
a = 0.976176 0.806360I
b = 0.877439 0.744862I
1.69967 1.41302I 2.66351 1.92930I
u = 0.075432 0.647379I
a = 0.976176 + 0.806360I
b = 0.877439 + 0.744862I
1.69967 + 1.41302I 2.66351 + 1.92930I
u = 0.81394 + 1.20054I
a = 0.637576 0.007282I
b = 0.877439 0.744862I
1.69967 4.24323I 2.66351 + 7.88819I
u = 0.81394 1.20054I
a = 0.637576 + 0.007282I
b = 0.877439 + 0.744862I
1.69967 + 4.24323I 2.66351 7.88819I
u = 1.20186 + 0.94950I
a = 0.096737 + 0.526881I
b = 0.754878
5.83725 1.41510I 9.19277 + 4.90874I
u = 1.20186 0.94950I
a = 0.096737 0.526881I
b = 0.754878
5.83725 + 1.41510I 9.19277 4.90874I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.01806 + 1.71046I
a = 0.602643 + 0.105082I
b = 0.877439 + 0.744862I
8.70142 + 5.99209I 6.31698 5.54425I
u = 1.01806 1.71046I
a = 0.602643 0.105082I
b = 0.877439 0.744862I
8.70142 5.99209I 6.31698 + 5.54425I
u = 1.88998 + 1.36209I
a = 0.221256 0.240760I
b = 0.754878
12.83900 + 3.16396I 0
u = 1.88998 1.36209I
a = 0.221256 + 0.240760I
b = 0.754878
12.83900 3.16396I 0
12
III. I
u
3
= h−u
6
u
5
3u
3
3u
2
+ 2b u + 1, a + 1, u
7
+ u
5
+ u
4
+ 2u
3
1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
1
2
u
6
+
1
2
u
5
+ ··· +
1
2
u
1
2
a
1
=
1
2
u
6
1
2
u
5
+ ···
1
2
u
1
2
1
2
u
6
+
1
2
u
5
+ ··· +
1
2
u
1
2
a
8
=
3
2
u
6
+
1
2
u
5
+ ···
1
2
u
1
2
u
6
+ u
4
+ u
3
+ 2u
2
+ u
a
6
=
u
1
2
u
6
1
2
u
5
+ ··· +
1
2
u +
1
2
a
2
=
1
2
u
6
+
1
2
u
5
+ ··· +
1
2
u +
3
2
1
2
u
6
1
2
u
5
+ ···
1
2
u
3
2
a
5
=
u
6
+ u
4
+ 2u
3
+ u
2
+ u
1
2
u
6
1
2
u
5
+ ···
3
2
u +
1
2
a
9
=
1
2
u
6
1
2
u
5
+ ···
1
2
u
1
2
u
5
u
4
+ u
3
+ u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
6
+ 2u
5
u
4
3u
3
3u
2
+ 3u 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
7
u
6
3u
5
+ 3u
4
+ 3u
3
2u
2
u + 1
c
2
, c
7
u
7
+ u
6
3u
5
3u
4
+ 3u
3
+ 2u
2
u 1
c
3
, c
6
u
7
+ u
5
+ u
4
+ 2u
3
1
c
4
u
7
+ 4u
5
+ 4u
3
u
2
1
c
8
, c
9
u
7
+ 4u
5
+ 4u
3
+ u
2
+ 1
c
10
u
7
2u
6
+ u
5
+ 2u
4
2u
3
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
y
7
7y
6
+ 21y
5
33y
4
+ 29y
3
16y
2
+ 5y 1
c
3
, c
6
y
7
+ 2y
6
+ 5y
5
+ 3y
4
+ 4y
3
+ 2y
2
1
c
4
, c
8
, c
9
y
7
+ 8y
6
+ 24y
5
+ 32y
4
+ 16y
3
y
2
2y 1
c
10
y
7
2y
6
+ 5y
5
8y
4
+ 8y
3
4y
2
1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.796153 + 0.643678I
a = 1.00000
b = 0.361823 + 0.541221I
11.54960 + 2.86772I 5.28046 0.77527I
u = 0.796153 0.643678I
a = 1.00000
b = 0.361823 0.541221I
11.54960 2.86772I 5.28046 + 0.77527I
u = 0.271378 + 0.816016I
a = 1.00000
b = 0.905465 0.998646I
2.23879 2.27150I 8.12085 + 5.44639I
u = 0.271378 0.816016I
a = 1.00000
b = 0.905465 + 0.998646I
2.23879 + 2.27150I 8.12085 5.44639I
u = 0.670242
a = 1.00000
b = 1.07355
5.45683 6.44350
u = 0.732410 + 1.178280I
a = 1.00000
b = 0.993133 + 0.472371I
4.86730 + 3.93356I 8.37695 4.94972I
u = 0.732410 1.178280I
a = 1.00000
b = 0.993133 0.472371I
4.86730 3.93356I 8.37695 + 4.94972I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
7
u
6
+ ··· u + 1)(u
14
+ u
13
+ ··· + u + 1)
· (u
24
u
23
+ ··· + 12u + 1)
c
2
, c
7
(u
7
+ u
6
+ ··· u 1)(u
14
+ u
13
+ ··· + u + 1)
· (u
24
u
23
+ ··· + 12u + 1)
c
3
, c
6
(u
7
+ u
5
+ u
4
+ 2u
3
1)(u
14
+ 3u
12
+ ··· + 2u + 1)
· (u
24
3u
23
+ ··· 6u + 19)
c
4
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
6
(u
7
+ 4u
5
+ 4u
3
u
2
1)
· (u
14
7u
13
+ ··· 56u + 8)
c
8
, c
9
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
6
(u
7
+ 4u
5
+ 4u
3
+ u
2
+ 1)
· (u
14
7u
13
+ ··· 56u + 8)
c
10
(u
3
+ u
2
1)
8
(u
7
2u
6
+ u
5
+ 2u
4
2u
3
+ 1)
· (u
14
13u
13
+ ··· 128u + 16)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
(y
7
7y
6
+ 21y
5
33y
4
+ 29y
3
16y
2
+ 5y 1)
· (y
14
15y
13
+ ··· + 7y + 1)(y
24
21y
23
+ ··· + 220y + 1)
c
3
, c
6
(y
7
+ 2y
6
+ ··· + 2y
2
1)(y
14
+ 6y
13
+ ··· 4y + 1)
· (y
24
+ 7y
23
+ ··· + 5436y + 361)
c
4
, c
8
, c
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
6
· (y
7
+ 8y
6
+ 24y
5
+ 32y
4
+ 16y
3
y
2
2y 1)
· (y
14
+ 13y
13
+ ··· 32y + 64)
c
10
(y
3
y
2
+ 2y 1)
8
(y
7
2y
6
+ 5y
5
8y
4
+ 8y
3
4y
2
1)
· (y
14
3y
13
+ ··· 128y + 256)
18