12a
1130
(K12a
1130
)
A knot diagram
1
Linearized knot diagam
4 8 9 10 11 12 2 3 1 7 6 5
Solving Sequence
4,9
3 8 2 1 10 5 7 11 12 6
c
3
c
8
c
2
c
1
c
9
c
4
c
7
c
10
c
12
c
6
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
62
u
61
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 62 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
62
u
61
+ · · · + u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
2
=
u
2
+ 1
u
4
2u
2
a
1
=
u
4
3u
2
+ 1
u
4
2u
2
a
10
=
u
9
6u
7
+ 11u
5
6u
3
+ u
u
9
5u
7
+ 7u
5
2u
3
+ u
a
5
=
u
18
+ 11u
16
48u
14
+ 105u
12
121u
10
+ 75u
8
30u
6
+ 8u
4
u
2
+ 1
u
18
+ 10u
16
39u
14
+ 74u
12
71u
10
+ 38u
8
18u
6
+ 4u
4
u
2
a
7
=
u
3
+ 2u
u
5
3u
3
+ u
a
11
=
u
17
10u
15
+ 39u
13
74u
11
+ 71u
9
38u
7
+ 18u
5
4u
3
+ u
u
19
+ 11u
17
48u
15
+ 105u
13
121u
11
+ 75u
9
30u
7
+ 8u
5
u
3
+ u
a
12
=
u
32
19u
30
+ ··· 2u
2
+ 1
u
32
18u
30
+ ··· + 12u
8
2u
2
a
6
=
u
54
+ 31u
52
+ ··· 2u
2
+ 1
u
56
32u
54
+ ··· + 6u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
59
+ 136u
57
+ ··· 4u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
62
17u
61
+ ··· + 1847u 113
c
2
, c
3
, c
7
c
8
u
62
+ u
61
+ ··· u + 1
c
4
u
62
u
61
+ ··· + 15u + 1
c
5
, c
6
, c
11
u
62
+ u
61
+ ··· u + 1
c
9
u
62
5u
61
+ ··· + 640u + 304
c
10
, c
12
u
62
3u
61
+ ··· + 55u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
62
11y
61
+ ··· 256449y + 12769
c
2
, c
3
, c
7
c
8
y
62
71y
61
+ ··· y + 1
c
4
y
62
+ y
61
+ ··· + 127y + 1
c
5
, c
6
, c
11
y
62
51y
61
+ ··· y + 1
c
9
y
62
+ 25y
61
+ ··· 2665888y + 92416
c
10
, c
12
y
62
+ 41y
61
+ ··· 2233y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.708768 + 0.494433I
0.01088 + 11.34630I 1.00889 9.72117I
u = 0.708768 0.494433I
0.01088 11.34630I 1.00889 + 9.72117I
u = 0.712691 + 0.482290I
4.59207 7.20372I 3.76784 + 7.81893I
u = 0.712691 0.482290I
4.59207 + 7.20372I 3.76784 7.81893I
u = 0.821977 + 0.248060I
1.60870 + 5.02300I 2.11818 2.33854I
u = 0.821977 0.248060I
1.60870 5.02300I 2.11818 + 2.33854I
u = 0.717017 + 0.462468I
1.49252 + 3.04670I 0.95105 4.03685I
u = 0.717017 0.462468I
1.49252 3.04670I 0.95105 + 4.03685I
u = 0.804271 + 0.274945I
5.95144 0.93191I 6.82947 0.41510I
u = 0.804271 0.274945I
5.95144 + 0.93191I 6.82947 + 0.41510I
u = 0.786850 + 0.308644I
2.51765 3.16231I 3.19226 + 4.63064I
u = 0.786850 0.308644I
2.51765 + 3.16231I 3.19226 4.63064I
u = 0.645614 + 0.481542I
5.40192 4.93284I 5.98347 + 6.95967I
u = 0.645614 0.481542I
5.40192 + 4.93284I 5.98347 6.95967I
u = 0.661871 + 0.431665I
0.37286 + 3.82050I 0.80971 8.83279I
u = 0.661871 0.431665I
0.37286 3.82050I 0.80971 + 8.83279I
u = 0.620723 + 0.337292I
1.08571 1.06603I 2.60164 + 1.01884I
u = 0.620723 0.337292I
1.08571 + 1.06603I 2.60164 1.01884I
u = 0.698913
2.99735 1.03130
u = 0.524035 + 0.459452I
3.21307 1.54671I 5.20781 1.38178I
u = 0.524035 0.459452I
3.21307 + 1.54671I 5.20781 + 1.38178I
u = 0.383395 + 0.494306I
3.62071 + 4.90483I 6.55837 6.65558I
u = 0.383395 0.494306I
3.62071 4.90483I 6.55837 + 6.65558I
u = 0.164450 + 0.582453I
1.57732 7.67033I 4.62669 + 4.82288I
u = 0.164450 0.582453I
1.57732 + 7.67033I 4.62669 4.82288I
u = 0.412131 + 0.432363I
0.75273 1.50608I 0.71484 + 5.28376I
u = 0.412131 0.432363I
0.75273 + 1.50608I 0.71484 5.28376I
u = 0.147128 + 0.569414I
2.94806 + 3.60850I 0.16305 2.91417I
u = 0.147128 0.569414I
2.94806 3.60850I 0.16305 + 2.91417I
u = 0.250782 + 0.527668I
6.54621 + 1.43098I 9.71321 0.47730I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.250782 0.527668I
6.54621 1.43098I 9.71321 + 0.47730I
u = 0.116312 + 0.549646I
0.240300 + 0.413797I 2.99515 0.89523I
u = 0.116312 0.549646I
0.240300 0.413797I 2.99515 + 0.89523I
u = 1.45204
1.51065 0
u = 1.47356 + 0.06742I
2.33707 6.71684I 0
u = 1.47356 0.06742I
2.33707 + 6.71684I 0
u = 1.49480 + 0.05903I
6.95748 + 3.05756I 0
u = 1.49480 0.05903I
6.95748 3.05756I 0
u = 1.50087
4.52108 0
u = 0.202355 + 0.437640I
0.938163 0.711468I 6.55301 + 2.55999I
u = 0.202355 0.437640I
0.938163 + 0.711468I 6.55301 2.55999I
u = 1.54113
4.36757 0
u = 1.55617 + 0.10084I
3.77147 0.32838I 0
u = 1.55617 0.10084I
3.77147 + 0.32838I 0
u = 1.58656 + 0.13617I
2.15018 + 7.19293I 0
u = 1.58656 0.13617I
2.15018 7.19293I 0
u = 1.58930 + 0.10190I
8.66644 + 2.71730I 0
u = 1.58930 0.10190I
8.66644 2.71730I 0
u = 1.59484 + 0.12216I
8.05254 5.85903I 0
u = 1.59484 0.12216I
8.05254 + 5.85903I 0
u = 1.60793 + 0.14425I
7.8739 13.7323I 0
u = 1.60793 0.14425I
7.8739 + 13.7323I 0
u = 1.60930 + 0.14013I
12.4821 + 9.5303I 0
u = 1.60930 0.14013I
12.4821 9.5303I 0
u = 1.61037 + 0.13371I
9.41174 5.27661I 0
u = 1.61037 0.13371I
9.41174 + 5.27661I 0
u = 1.62295 + 0.08557I
10.77130 + 4.64558I 0
u = 1.62295 0.08557I
10.77130 4.64558I 0
u = 1.62421 + 0.07686I
14.2631 0.3971I 0
u = 1.62421 0.07686I
14.2631 + 0.3971I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62511 + 0.06931I
9.97350 3.82516I 0
u = 1.62511 0.06931I
9.97350 + 3.82516I 0
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
62
17u
61
+ ··· + 1847u 113
c
2
, c
3
, c
7
c
8
u
62
+ u
61
+ ··· u + 1
c
4
u
62
u
61
+ ··· + 15u + 1
c
5
, c
6
, c
11
u
62
+ u
61
+ ··· u + 1
c
9
u
62
5u
61
+ ··· + 640u + 304
c
10
, c
12
u
62
3u
61
+ ··· + 55u 9
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
62
11y
61
+ ··· 256449y + 12769
c
2
, c
3
, c
7
c
8
y
62
71y
61
+ ··· y + 1
c
4
y
62
+ y
61
+ ··· + 127y + 1
c
5
, c
6
, c
11
y
62
51y
61
+ ··· y + 1
c
9
y
62
+ 25y
61
+ ··· 2665888y + 92416
c
10
, c
12
y
62
+ 41y
61
+ ··· 2233y + 81
9