12a
1137
(K12a
1137
)
A knot diagram
1
Linearized knot diagam
4 8 9 10 11 1 12 3 2 6 5 7
Solving Sequence
2,8
3 9 4 10 5
1,12
7 6 11
c
2
c
8
c
3
c
9
c
4
c
1
c
7
c
6
c
11
c
5
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
29
5u
28
+ ··· + b 3, u
29
+ u
28
+ ··· + 2a 1, u
30
3u
29
+ ··· + 3u + 2i
I
u
2
= hu
22
a u
22
+ ··· + b 1, u
22
11u
20
+ ··· + a
2
+ u, u
23
+ u
22
+ ··· 2u
3
+ 1i
I
u
3
= hu
3
+ b u 1, u
4
+ 2u
2
+ a 1, u
6
3u
4
+ 2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 82 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3u
29
5u
28
+· · ·+b3, u
29
+u
28
+· · ·+2a1, u
30
3u
29
+· · ·+3u+2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
9
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
12
=
1
2
u
29
1
2
u
28
+ ··· u +
1
2
3u
29
+ 5u
28
+ ··· + 6u + 3
a
7
=
1
2
u
29
1
2
u
28
+ ··· 3u
3
2
2u
29
3u
28
+ ··· 6u 3
a
6
=
3
2
u
29
3
2
u
28
+ ··· 9u
9
2
5u
29
7u
28
+ ··· 16u 7
a
11
=
1
2
u
29
1
2
u
28
+ ··· 2u
2
1
2
u
29
+ 2u
28
+ ··· + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
29
6u
28
44u
27
+ 58u
26
+ 214u
25
222u
24
596u
23
+ 376u
22
+ 1006u
21
58u
20
920u
19
828u
18
+ 88u
17
+ 1268u
16
+ 752u
15
520u
14
658u
13
320u
12
+
76u
11
+ 234u
10
14u
9
2u
8
+ 148u
7
+ 92u
6
+ 38u
5
30u
4
80u
3
44u
2
24u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
7u
29
+ ··· 415u + 136
c
2
, c
3
, c
8
u
30
3u
29
+ ··· + 3u + 2
c
4
u
30
+ 3u
29
+ ··· + 320u + 128
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
30
+ 16u
28
+ ··· + u + 1
c
9
u
30
+ 9u
29
+ ··· + 93u + 6
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ 5y
29
+ ··· + 17087y + 18496
c
2
, c
3
, c
8
y
30
27y
29
+ ··· + 15y + 4
c
4
y
30
5y
29
+ ··· + 323584y + 16384
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
30
+ 32y
29
+ ··· + 9y + 1
c
9
y
30
+ y
29
+ ··· 2433y + 36
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.930902
a = 0.756247
b = 1.08322
1.46218 7.28610
u = 1.089660 + 0.308662I
a = 0.099048 1.205780I
b = 1.65581 + 0.20452I
6.92010 7.02665I 2.40937 + 6.27539I
u = 1.089660 0.308662I
a = 0.099048 + 1.205780I
b = 1.65581 0.20452I
6.92010 + 7.02665I 2.40937 6.27539I
u = 0.704410 + 0.436123I
a = 1.21026 + 1.24528I
b = 0.040668 0.499528I
7.95280 + 7.12520I 2.76356 2.96102I
u = 0.704410 0.436123I
a = 1.21026 1.24528I
b = 0.040668 + 0.499528I
7.95280 7.12520I 2.76356 + 2.96102I
u = 0.304786 + 0.743959I
a = 1.46293 + 1.06283I
b = 1.36076 + 1.49177I
6.54937 11.30350I 0.19641 + 8.01251I
u = 0.304786 0.743959I
a = 1.46293 1.06283I
b = 1.36076 1.49177I
6.54937 + 11.30350I 0.19641 8.01251I
u = 0.103486 + 0.765219I
a = 1.73841 + 0.04408I
b = 1.54138 + 0.39049I
3.91072 + 3.07613I 0.68680 2.45527I
u = 0.103486 0.765219I
a = 1.73841 0.04408I
b = 1.54138 0.39049I
3.91072 3.07613I 0.68680 + 2.45527I
u = 0.463501 + 0.614076I
a = 1.51718 1.19039I
b = 0.727847 0.567986I
11.82910 + 2.06121I 4.42340 3.33690I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.463501 0.614076I
a = 1.51718 + 1.19039I
b = 0.727847 + 0.567986I
11.82910 2.06121I 4.42340 + 3.33690I
u = 0.229240 + 0.685867I
a = 0.139869 1.010570I
b = 0.032234 1.383400I
3.39097 3.33199I 9.55544 + 5.59326I
u = 0.229240 0.685867I
a = 0.139869 + 1.010570I
b = 0.032234 + 1.383400I
3.39097 + 3.33199I 9.55544 5.59326I
u = 0.680122
a = 0.965666
b = 0.665414
1.48461 6.75330
u = 1.307540 + 0.319637I
a = 0.353413 + 0.920897I
b = 1.132810 0.600648I
8.31617 + 0.83782I 4.44779 + 0.17762I
u = 1.307540 0.319637I
a = 0.353413 0.920897I
b = 1.132810 + 0.600648I
8.31617 0.83782I 4.44779 0.17762I
u = 1.352520 + 0.135874I
a = 0.381110 + 0.172911I
b = 0.383620 + 0.193018I
3.75541 + 0.77985I 2.27872 + 2.76052I
u = 1.352520 0.135874I
a = 0.381110 0.172911I
b = 0.383620 0.193018I
3.75541 0.77985I 2.27872 2.76052I
u = 1.350210 + 0.200800I
a = 0.056070 0.361065I
b = 0.555528 0.782092I
4.51414 3.42768I 0.15581 + 5.80126I
u = 1.350210 0.200800I
a = 0.056070 + 0.361065I
b = 0.555528 + 0.782092I
4.51414 + 3.42768I 0.15581 5.80126I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.38985 + 0.27006I
a = 0.489440 + 0.230842I
b = 1.07204 + 1.56270I
1.76191 + 6.80641I 4.17068 6.44926I
u = 1.38985 0.27006I
a = 0.489440 0.230842I
b = 1.07204 1.56270I
1.76191 6.80641I 4.17068 + 6.44926I
u = 1.42853 + 0.29221I
a = 0.046116 1.008880I
b = 2.90289 1.59266I
12.0906 + 15.0680I 4.25091 8.34423I
u = 1.42853 0.29221I
a = 0.046116 + 1.008880I
b = 2.90289 + 1.59266I
12.0906 15.0680I 4.25091 + 8.34423I
u = 1.46604 + 0.09649I
a = 0.257035 0.974980I
b = 0.50288 1.41355I
14.8637 5.5424I 6.83012 + 3.12730I
u = 1.46604 0.09649I
a = 0.257035 + 0.974980I
b = 0.50288 + 1.41355I
14.8637 + 5.5424I 6.83012 3.12730I
u = 1.46325 + 0.21014I
a = 0.110662 + 1.025770I
b = 1.28614 + 1.87885I
18.0378 5.0287I 7.86103 + 3.20489I
u = 1.46325 0.21014I
a = 0.110662 1.025770I
b = 1.28614 1.87885I
18.0378 + 5.0287I 7.86103 3.20489I
u = 0.142590 + 0.468477I
a = 0.514389 + 0.535305I
b = 0.066704 + 0.337976I
0.231238 + 0.878798I 5.31548 7.61341I
u = 0.142590 0.468477I
a = 0.514389 0.535305I
b = 0.066704 0.337976I
0.231238 0.878798I 5.31548 + 7.61341I
7
II.
I
u
2
= hu
22
au
22
+· · ·+b1, u
22
11u
20
+· · ·+a
2
+u, u
23
+u
22
+· · ·2u
3
+1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
9
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
12
=
a
u
22
a + u
22
+ ··· u + 1
a
7
=
u
22
+ u
21
+ ··· u
2
+ 1
u
22
a + u
21
+ ··· a + u
a
6
=
u
22
+ u
21
+ ··· + au + 1
u
22
a + u
21
+ ··· a + u
a
11
=
u
17
8u
15
+ ··· + a + 1
u
22
a + u
22
+ ··· u
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
20
+ 36u
18
4u
17
132u
16
+ 32u
15
+ 244u
14
100u
13
220u
12
+ 144u
11
+ 60u
10
80u
9
+ 24u
8
+ 4u
6
12u
5
8u
4
+ 20u
3
4u
2
2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
23
5u
22
+ ··· + 32u 7)
2
c
2
, c
3
, c
8
(u
23
+ u
22
+ ··· 2u
3
+ 1)
2
c
4
(u
23
u
22
+ ··· 8u + 5)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
46
u
45
+ ··· 18u + 5
c
9
(u
23
3u
22
+ ··· + 4u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
23
+ 7y
22
+ ··· 404y 49)
2
c
2
, c
3
, c
8
(y
23
21y
22
+ ··· 6y
2
1)
2
c
4
(y
23
5y
22
+ ··· + 264y 25)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
46
+ 35y
45
+ ··· 264y + 25
c
9
(y
23
y
22
+ ··· + 4y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.070060 + 0.182203I
a = 0.070084 + 1.156430I
b = 1.59533 0.13562I
2.26450 + 3.60580I 2.88555 4.48858I
u = 1.070060 + 0.182203I
a = 0.603866 0.224449I
b = 1.405470 0.026465I
2.26450 + 3.60580I 2.88555 4.48858I
u = 1.070060 0.182203I
a = 0.070084 1.156430I
b = 1.59533 + 0.13562I
2.26450 3.60580I 2.88555 + 4.48858I
u = 1.070060 0.182203I
a = 0.603866 + 0.224449I
b = 1.405470 + 0.026465I
2.26450 3.60580I 2.88555 + 4.48858I
u = 1.15018
a = 0.261144 + 0.980051I
b = 1.95558 0.15361I
5.24303 1.52610
u = 1.15018
a = 0.261144 0.980051I
b = 1.95558 + 0.15361I
5.24303 1.52610
u = 0.285113 + 0.703745I
a = 0.120117 + 1.147110I
b = 0.22592 + 1.52660I
1.28846 + 7.02777I 3.56401 7.34039I
u = 0.285113 + 0.703745I
a = 1.49794 1.02732I
b = 1.14402 1.60438I
1.28846 + 7.02777I 3.56401 7.34039I
u = 0.285113 0.703745I
a = 0.120117 1.147110I
b = 0.22592 1.52660I
1.28846 7.02777I 3.56401 + 7.34039I
u = 0.285113 0.703745I
a = 1.49794 + 1.02732I
b = 1.14402 + 1.60438I
1.28846 7.02777I 3.56401 + 7.34039I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.625021 + 0.336059I
a = 1.106610 0.179524I
b = 0.474160 0.683912I
2.66992 3.26242I 0.80376 + 2.26815I
u = 0.625021 + 0.336059I
a = 1.18555 1.45591I
b = 0.343202 + 0.182577I
2.66992 3.26242I 0.80376 + 2.26815I
u = 0.625021 0.336059I
a = 1.106610 + 0.179524I
b = 0.474160 + 0.683912I
2.66992 + 3.26242I 0.80376 2.26815I
u = 0.625021 0.336059I
a = 1.18555 + 1.45591I
b = 0.343202 0.182577I
2.66992 + 3.26242I 0.80376 2.26815I
u = 0.284234 + 0.630366I
a = 1.56548 + 0.06970I
b = 0.841978 + 0.781651I
3.51028 2.29224I 0.17333 + 3.81893I
u = 0.284234 + 0.630366I
a = 1.60090 + 1.02304I
b = 0.68342 + 1.61231I
3.51028 2.29224I 0.17333 + 3.81893I
u = 0.284234 0.630366I
a = 1.56548 0.06970I
b = 0.841978 0.781651I
3.51028 + 2.29224I 0.17333 3.81893I
u = 0.284234 0.630366I
a = 1.60090 1.02304I
b = 0.68342 1.61231I
3.51028 + 2.29224I 0.17333 3.81893I
u = 0.143415 + 0.670993I
a = 0.229021 + 0.764912I
b = 0.467867 + 1.159790I
0.452611 0.303352I 7.41146 0.40480I
u = 0.143415 + 0.670993I
a = 1.68536 0.02244I
b = 1.182440 0.435170I
0.452611 0.303352I 7.41146 0.40480I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.143415 0.670993I
a = 0.229021 0.764912I
b = 0.467867 1.159790I
0.452611 + 0.303352I 7.41146 + 0.40480I
u = 0.143415 0.670993I
a = 1.68536 + 0.02244I
b = 1.182440 + 0.435170I
0.452611 + 0.303352I 7.41146 + 0.40480I
u = 1.347540 + 0.251864I
a = 0.317756 0.706992I
b = 0.719514 + 0.327199I
4.24683 3.02476I 2.12213 + 2.21609I
u = 1.347540 + 0.251864I
a = 0.312944 0.116370I
b = 0.63476 1.57084I
4.24683 3.02476I 2.12213 + 2.21609I
u = 1.347540 0.251864I
a = 0.317756 + 0.706992I
b = 0.719514 0.327199I
4.24683 + 3.02476I 2.12213 2.21609I
u = 1.347540 0.251864I
a = 0.312944 + 0.116370I
b = 0.63476 + 1.57084I
4.24683 + 3.02476I 2.12213 2.21609I
u = 0.405548 + 0.414027I
a = 0.39267 1.50726I
b = 0.861333 0.590644I
4.30391 0.94673I 2.43633 + 4.33310I
u = 0.405548 + 0.414027I
a = 1.66459 + 1.46493I
b = 0.245747 + 0.579180I
4.30391 0.94673I 2.43633 + 4.33310I
u = 0.405548 0.414027I
a = 0.39267 + 1.50726I
b = 0.861333 + 0.590644I
4.30391 + 0.94673I 2.43633 4.33310I
u = 0.405548 0.414027I
a = 1.66459 1.46493I
b = 0.245747 0.579180I
4.30391 + 0.94673I 2.43633 4.33310I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41968 + 0.16903I
a = 0.155020 0.948878I
b = 0.25191 2.81816I
10.07070 + 3.16234I 5.66460 3.46689I
u = 1.41968 + 0.16903I
a = 0.365183 + 0.593904I
b = 1.25657 + 0.90144I
10.07070 + 3.16234I 5.66460 3.46689I
u = 1.41968 0.16903I
a = 0.155020 + 0.948878I
b = 0.25191 + 2.81816I
10.07070 3.16234I 5.66460 + 3.46689I
u = 1.41968 0.16903I
a = 0.365183 0.593904I
b = 1.25657 0.90144I
10.07070 3.16234I 5.66460 + 3.46689I
u = 1.42608 + 0.11950I
a = 0.215286 + 0.943925I
b = 0.61581 + 2.08277I
8.93108 + 1.73636I 3.79313 2.46590I
u = 1.42608 + 0.11950I
a = 0.567183 0.228717I
b = 0.479254 + 0.173931I
8.93108 + 1.73636I 3.79313 2.46590I
u = 1.42608 0.11950I
a = 0.215286 0.943925I
b = 0.61581 2.08277I
8.93108 1.73636I 3.79313 + 2.46590I
u = 1.42608 0.11950I
a = 0.567183 + 0.228717I
b = 0.479254 0.173931I
8.93108 1.73636I 3.79313 + 2.46590I
u = 1.41107 + 0.24900I
a = 0.025103 0.955027I
b = 2.65658 2.58973I
8.92938 + 5.52406I 4.27222 3.52157I
u = 1.41107 + 0.24900I
a = 0.505997 + 0.609997I
b = 0.287249 0.596485I
8.92938 + 5.52406I 4.27222 3.52157I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41107 0.24900I
a = 0.025103 + 0.955027I
b = 2.65658 + 2.58973I
8.92938 5.52406I 4.27222 + 3.52157I
u = 1.41107 0.24900I
a = 0.505997 0.609997I
b = 0.287249 + 0.596485I
8.92938 5.52406I 4.27222 + 3.52157I
u = 1.41586 + 0.27635I
a = 0.023737 + 0.976168I
b = 2.96691 + 1.96056I
6.72129 10.59580I 1.03092 + 7.47788I
u = 1.41586 + 0.27635I
a = 0.565778 0.293599I
b = 1.26416 1.54071I
6.72129 10.59580I 1.03092 + 7.47788I
u = 1.41586 0.27635I
a = 0.023737 0.976168I
b = 2.96691 1.96056I
6.72129 + 10.59580I 1.03092 7.47788I
u = 1.41586 0.27635I
a = 0.565778 + 0.293599I
b = 1.26416 + 1.54071I
6.72129 + 10.59580I 1.03092 7.47788I
15
III. I
u
3
= hu
3
+ b u 1, u
4
+ 2u
2
+ a 1, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
9
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
1
=
0
u
4
u
2
1
a
12
=
u
4
2u
2
+ 1
u
3
+ u + 1
a
7
=
u
5
3u
3
+ 2u
u
5
u
4
2u
3
+ 2u
2
+ 2u
a
6
=
u
5
3u
3
+ 2u
u
5
u
4
2u
3
+ 2u
2
+ u
a
11
=
u
4
u
3
2u
2
+ 2u + 1
2u
3
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 8u
2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
2
c
2
, c
3
, c
8
u
6
3u
4
+ 2u
2
+ 1
c
4
u
6
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(u
2
+ 1)
3
c
9
u
6
+ u
4
+ 2u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)
2
c
2
, c
3
, c
8
(y
3
3y
2
+ 2y + 1)
2
c
4
y
6
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y + 1)
6
c
9
(y
3
+ y
2
+ 2y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.122561 + 0.744862I
b = 0.255138 0.877439I
6.31400 + 2.82812I 3.50976 2.97945I
u = 1.307140 0.215080I
a = 0.122561 0.744862I
b = 0.255138 + 0.877439I
6.31400 2.82812I 3.50976 + 2.97945I
u = 1.307140 + 0.215080I
a = 0.122561 0.744862I
b = 1.74486 0.87744I
6.31400 2.82812I 3.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.122561 + 0.744862I
b = 1.74486 + 0.87744I
6.31400 + 2.82812I 3.50976 2.97945I
u = 0.569840I
a = 1.75488
b = 1.000000 + 0.754878I
2.17641 3.01950
u = 0.569840I
a = 1.75488
b = 1.000000 0.754878I
2.17641 3.01950
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
+ u
2
1)
2
)(u
23
5u
22
+ ··· + 32u 7)
2
· (u
30
7u
29
+ ··· 415u + 136)
c
2
, c
3
, c
8
(u
6
3u
4
+ 2u
2
+ 1)(u
23
+ u
22
+ ··· 2u
3
+ 1)
2
· (u
30
3u
29
+ ··· + 3u + 2)
c
4
u
6
(u
23
u
22
+ ··· 8u + 5)
2
(u
30
+ 3u
29
+ ··· + 320u + 128)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
((u
2
+ 1)
3
)(u
30
+ 16u
28
+ ··· + u + 1)(u
46
u
45
+ ··· 18u + 5)
c
9
(u
6
+ u
4
+ 2u
2
+ 1)(u
23
3u
22
+ ··· + 4u 1)
2
· (u
30
+ 9u
29
+ ··· + 93u + 6)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
y
2
+ 2y 1)
2
)(y
23
+ 7y
22
+ ··· 404y 49)
2
· (y
30
+ 5y
29
+ ··· + 17087y + 18496)
c
2
, c
3
, c
8
((y
3
3y
2
+ 2y + 1)
2
)(y
23
21y
22
+ ··· 6y
2
1)
2
· (y
30
27y
29
+ ··· + 15y + 4)
c
4
y
6
(y
23
5y
22
+ ··· + 264y 25)
2
· (y
30
5y
29
+ ··· + 323584y + 16384)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
((y + 1)
6
)(y
30
+ 32y
29
+ ··· + 9y + 1)(y
46
+ 35y
45
+ ··· 264y + 25)
c
9
((y
3
+ y
2
+ 2y + 1)
2
)(y
23
y
22
+ ··· + 4y 1)
2
· (y
30
+ y
29
+ ··· 2433y + 36)
21