12a
1146
(K12a
1146
)
A knot diagram
1
Linearized knot diagam
4 8 9 11 12 1 10 3 2 7 6 5
Solving Sequence
2,8
3 9 4 10 1 7 11 5 6 12
c
2
c
8
c
3
c
9
c
1
c
7
c
10
c
4
c
6
c
12
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
58
u
57
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
58
u
57
+ · · · u + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
9
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
1
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
7
=
u
7
4u
5
+ 4u
3
u
7
3u
5
+ 2u
3
+ u
a
11
=
u
11
+ 6u
9
12u
7
+ 8u
5
u
3
+ 2u
u
11
+ 5u
9
8u
7
+ 3u
5
+ u
3
+ u
a
5
=
u
26
+ 13u
24
+ ··· + u
2
+ 1
u
26
+ 12u
24
+ ··· + 6u
4
u
2
a
6
=
u
21
10u
19
+ ··· + 10u
3
+ u
u
23
+ 11u
21
+ ··· + 2u
3
+ u
a
12
=
u
55
26u
53
+ ··· + 10u
5
+ 2u
u
57
+ 27u
55
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
55
104u
53
+ ··· 12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
10
u
58
7u
57
+ ··· 79u + 7
c
2
, c
3
, c
8
u
58
u
57
+ ··· u + 1
c
4
, c
6
u
58
u
57
+ ··· 3u + 2
c
5
, c
11
, c
12
u
58
+ u
57
+ ··· + u + 1
c
9
u
58
+ 3u
57
+ ··· 129u 192
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
10
y
58
+ 61y
57
+ ··· + 913y + 49
c
2
, c
3
, c
8
y
58
55y
57
+ ··· + 5y + 1
c
4
, c
6
y
58
27y
57
+ ··· + 23y + 4
c
5
, c
11
, c
12
y
58
+ 49y
57
+ ··· + 5y + 1
c
9
y
58
27y
57
+ ··· 1316865y + 36864
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.14724
1.35276 0
u = 1.151380 + 0.058161I
2.53228 + 3.79612I 0
u = 1.151380 0.058161I
2.53228 3.79612I 0
u = 0.481555 + 0.664903I
11.99140 + 2.20783I 4.22893 3.07025I
u = 0.481555 0.664903I
11.99140 2.20783I 4.22893 + 3.07025I
u = 0.443054 + 0.686901I
7.60131 10.06700I 0.80807 + 7.84045I
u = 0.443054 0.686901I
7.60131 + 10.06700I 0.80807 7.84045I
u = 0.515153 + 0.627947I
7.87503 + 5.69223I 1.58915 1.87939I
u = 0.515153 0.627947I
7.87503 5.69223I 1.58915 + 1.87939I
u = 0.438326 + 0.675169I
2.65616 + 6.14445I 3.69389 6.69694I
u = 0.438326 0.675169I
2.65616 6.14445I 3.69389 + 6.69694I
u = 0.501005 + 0.618665I
2.90568 1.85234I 2.97160 + 0.63684I
u = 0.501005 0.618665I
2.90568 + 1.85234I 2.97160 0.63684I
u = 0.442362 + 0.648377I
5.01043 2.20484I 0.34907 + 2.50917I
u = 0.442362 0.648377I
5.01043 + 2.20484I 0.34907 2.50917I
u = 0.466755 + 0.626215I
5.10910 1.98014I 0.15978 + 4.14976I
u = 0.466755 0.626215I
5.10910 + 1.98014I 0.15978 4.14976I
u = 1.307560 + 0.189347I
4.08058 1.65712I 0
u = 1.307560 0.189347I
4.08058 + 1.65712I 0
u = 1.331250 + 0.207988I
0.86765 + 5.45245I 0
u = 1.331250 0.207988I
0.86765 5.45245I 0
u = 0.188380 + 0.617055I
0.49984 + 6.30818I 4.83696 8.02356I
u = 0.188380 0.617055I
0.49984 6.30818I 4.83696 + 8.02356I
u = 1.354390 + 0.050533I
3.56112 + 0.15774I 0
u = 1.354390 0.050533I
3.56112 0.15774I 0
u = 1.351690 + 0.130313I
4.61294 2.74721I 0
u = 1.351690 0.130313I
4.61294 + 2.74721I 0
u = 1.345480 + 0.220131I
5.32159 9.34589I 0
u = 1.345480 0.220131I
5.32159 + 9.34589I 0
u = 0.155934 + 0.602452I
3.78873 2.51425I 10.60618 + 5.42125I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.155934 0.602452I
3.78873 + 2.51425I 10.60618 5.42125I
u = 0.107983 + 0.596551I
0.304445 1.182970I 7.28418 0.76991I
u = 0.107983 0.596551I
0.304445 + 1.182970I 7.28418 + 0.76991I
u = 0.366762 + 0.465079I
4.44827 1.54185I 2.24711 + 4.56850I
u = 0.366762 0.465079I
4.44827 + 1.54185I 2.24711 4.56850I
u = 1.411190 + 0.054492I
8.16493 + 2.73473I 0
u = 1.411190 0.054492I
8.16493 2.73473I 0
u = 1.40642 + 0.15083I
10.05250 + 3.76035I 0
u = 1.40642 0.15083I
10.05250 3.76035I 0
u = 0.547094 + 0.139034I
2.23185 3.44215I 0.89332 + 2.64024I
u = 0.547094 0.139034I
2.23185 + 3.44215I 0.89332 2.64024I
u = 0.511205
1.78784 4.31540
u = 1.47373 + 0.23609I
11.19640 + 5.44235I 0
u = 1.47373 0.23609I
11.19640 5.44235I 0
u = 1.47805 + 0.22330I
11.39260 + 5.08524I 0
u = 1.47805 0.22330I
11.39260 5.08524I 0
u = 1.47640 + 0.24549I
8.84229 9.50759I 0
u = 1.47640 0.24549I
8.84229 + 9.50759I 0
u = 1.48567 + 0.21307I
9.33313 1.16891I 0
u = 1.48567 0.21307I
9.33313 + 1.16891I 0
u = 1.48008 + 0.24923I
13.8182 + 13.4851I 0
u = 1.48008 0.24923I
13.8182 13.4851I 0
u = 1.49285 + 0.21200I
14.3880 2.6478I 0
u = 1.49285 0.21200I
14.3880 + 2.6478I 0
u = 1.49028 + 0.23319I
18.3827 5.4813I 0
u = 1.49028 0.23319I
18.3827 + 5.4813I 0
u = 0.155026 + 0.396579I
0.139434 + 0.781761I 4.01123 8.80292I
u = 0.155026 0.396579I
0.139434 0.781761I 4.01123 + 8.80292I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
10
u
58
7u
57
+ ··· 79u + 7
c
2
, c
3
, c
8
u
58
u
57
+ ··· u + 1
c
4
, c
6
u
58
u
57
+ ··· 3u + 2
c
5
, c
11
, c
12
u
58
+ u
57
+ ··· + u + 1
c
9
u
58
+ 3u
57
+ ··· 129u 192
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
10
y
58
+ 61y
57
+ ··· + 913y + 49
c
2
, c
3
, c
8
y
58
55y
57
+ ··· + 5y + 1
c
4
, c
6
y
58
27y
57
+ ··· + 23y + 4
c
5
, c
11
, c
12
y
58
+ 49y
57
+ ··· + 5y + 1
c
9
y
58
27y
57
+ ··· 1316865y + 36864
8