12a
1151
(K12a
1151
)
A knot diagram
1
Linearized knot diagam
4 8 10 1 9 12 11 3 5 2 7 6
Solving Sequence
6,9
5
1,10
4 2 3 8 12 7 11
c
5
c
9
c
4
c
1
c
3
c
8
c
12
c
6
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−7.84155 × 10
139
u
78
5.86060 × 10
140
u
77
+ ··· + 3.54905 × 10
139
b + 7.76498 × 10
140
,
3.04871 × 10
140
u
78
2.59985 × 10
141
u
77
+ ··· + 3.54905 × 10
139
a 8.26678 × 10
141
,
u
79
+ 9u
78
+ ··· + 312u + 16i
I
u
2
= h1422881983u
23
5915588584u
22
+ ··· + 1616424857b 14740278204,
629416068u
23
2394813871u
22
+ ··· + 1616424857a + 1027469093, u
24
2u
23
+ ··· + 12u
2
+ 1i
I
u
3
= ha
5
u a
5
+ a
4
6a
3
u + 5a
3
+ a
2
u 3a
2
+ 5au + 3b 6a + 4u 4,
a
6
6a
4
3a
3
u + 3a
2
u + 9a
2
+ 9au + 3a + 3u 2, u
2
u + 1i
* 3 irreducible components of dim
C
= 0, with total 115 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−7.84 × 10
139
u
78
5.86 × 10
140
u
77
+ · · · + 3.55 × 10
139
b + 7.76 ×
10
140
, 3.05 × 10
140
u
78
2.60 × 10
141
u
77
+ · · · + 3.55 × 10
139
a 8.27 ×
10
141
, u
79
+ 9u
78
+ · · · + 312u + 16i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
8.59020u
78
+ 73.2548u
77
+ ··· + 4369.81u + 232.929
2.20948u
78
+ 16.5132u
77
+ ··· 304.035u 21.8790
a
10
=
u
u
3
+ u
a
4
=
4.41608u
78
+ 37.7333u
77
+ ··· + 712.316u + 11.5442
0.115368u
78
0.227832u
77
+ ··· + 445.621u + 24.6192
a
2
=
6.63533u
78
+ 60.0366u
77
+ ··· + 3925.20u + 195.258
0.658120u
78
+ 11.9172u
77
+ ··· + 3859.32u + 218.139
a
3
=
4.24499u
78
+ 36.9550u
77
+ ··· + 1239.11u + 42.1422
0.673937u
78
4.63249u
77
+ ··· + 737.578u + 43.0337
a
8
=
2.82716u
78
+ 25.5853u
77
+ ··· + 1757.24u + 112.506
0.880297u
78
+ 11.7432u
77
+ ··· + 3253.57u + 185.762
a
12
=
10.7997u
78
+ 89.7680u
77
+ ··· + 4065.78u + 211.050
2.20948u
78
+ 16.5132u
77
+ ··· 304.035u 21.8790
a
7
=
1.59360u
78
13.0102u
77
+ ··· + 1119.31u + 87.6656
0.900530u
78
8.93749u
77
+ ··· 1110.00u 59.2587
a
11
=
5.22487u
78
39.9580u
77
+ ··· + 817.645u + 48.4343
1.91964u
78
11.2753u
77
+ ··· + 1557.11u + 85.8871
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12.0387u
78
+ 103.817u
77
+ ··· + 4299.97u + 226.784
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
79
5u
78
+ ··· + 212u 41
c
2
, c
8
u
79
u
78
+ ··· + 765u 241
c
3
u
79
+ 9u
78
+ ··· + 2805u 271
c
5
, c
9
u
79
9u
78
+ ··· + 312u 16
c
6
, c
7
, c
11
c
12
u
79
+ u
78
+ ··· + 56u 11
c
10
u
79
15u
78
+ ··· 99261632u + 6792448
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
79
+ 55y
78
+ ··· 61082y 1681
c
2
, c
8
y
79
61y
78
+ ··· + 942387y 58081
c
3
y
79
5y
78
+ ··· + 2781355y 73441
c
5
, c
9
y
79
+ 39y
78
+ ··· 4928y 256
c
6
, c
7
, c
11
c
12
y
79
+ 101y
78
+ ··· 2100y 121
c
10
y
79
39y
78
+ ··· + 546186244640768y 46137349832704
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.023800 + 1.030940I
a = 1.144260 + 0.499043I
b = 0.343277 0.203755I
3.36900 0.75920I 0
u = 0.023800 1.030940I
a = 1.144260 0.499043I
b = 0.343277 + 0.203755I
3.36900 + 0.75920I 0
u = 0.470758 + 0.927302I
a = 1.398390 + 0.187507I
b = 0.555908 0.114573I
0.31736 + 4.31539I 0
u = 0.470758 0.927302I
a = 1.398390 0.187507I
b = 0.555908 + 0.114573I
0.31736 4.31539I 0
u = 0.266379 + 0.891409I
a = 1.70242 0.50761I
b = 0.195113 0.741709I
1.86223 1.13419I 0
u = 0.266379 0.891409I
a = 1.70242 + 0.50761I
b = 0.195113 + 0.741709I
1.86223 + 1.13419I 0
u = 0.354891 + 0.769340I
a = 1.071220 0.126911I
b = 0.494709 + 0.343759I
0.261328 0.631677I 0
u = 0.354891 0.769340I
a = 1.071220 + 0.126911I
b = 0.494709 0.343759I
0.261328 + 0.631677I 0
u = 1.151780 + 0.216696I
a = 0.095609 + 0.236404I
b = 0.02984 + 1.68336I
13.60590 3.08638I 0
u = 1.151780 0.216696I
a = 0.095609 0.236404I
b = 0.02984 1.68336I
13.60590 + 3.08638I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.630807 + 0.534227I
a = 1.59911 + 1.50283I
b = 0.06854 + 1.63478I
12.76480 + 4.44702I 0
u = 0.630807 0.534227I
a = 1.59911 1.50283I
b = 0.06854 1.63478I
12.76480 4.44702I 0
u = 0.143148 + 1.181990I
a = 0.533602 1.146280I
b = 0.026851 + 1.281330I
1.08946 + 1.81199I 0
u = 0.143148 1.181990I
a = 0.533602 + 1.146280I
b = 0.026851 1.281330I
1.08946 1.81199I 0
u = 0.467597 + 1.096360I
a = 1.217970 0.323265I
b = 0.435028 0.947042I
1.99976 + 7.20460I 0
u = 0.467597 1.096360I
a = 1.217970 + 0.323265I
b = 0.435028 + 0.947042I
1.99976 7.20460I 0
u = 0.009704 + 1.194850I
a = 0.704930 + 0.058295I
b = 0.498721 + 0.561666I
0.178271 + 0.057111I 0
u = 0.009704 1.194850I
a = 0.704930 0.058295I
b = 0.498721 0.561666I
0.178271 0.057111I 0
u = 0.772582 + 0.216203I
a = 0.358690 + 0.251842I
b = 0.131224 0.951947I
4.36734 + 2.49071I 0
u = 0.772582 0.216203I
a = 0.358690 0.251842I
b = 0.131224 + 0.951947I
4.36734 2.49071I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.291360 + 1.165960I
a = 0.887219 + 0.300056I
b = 0.631464 + 0.106906I
1.21371 3.57365I 0
u = 0.291360 1.165960I
a = 0.887219 0.300056I
b = 0.631464 0.106906I
1.21371 + 3.57365I 0
u = 0.425835 + 1.139080I
a = 0.433166 + 0.125823I
b = 0.07867 1.47146I
6.69360 + 2.18923I 0
u = 0.425835 1.139080I
a = 0.433166 0.125823I
b = 0.07867 + 1.47146I
6.69360 2.18923I 0
u = 0.620307 + 1.046960I
a = 1.41879 + 0.34275I
b = 0.12439 + 1.69908I
11.2380 9.4496I 0
u = 0.620307 1.046960I
a = 1.41879 0.34275I
b = 0.12439 1.69908I
11.2380 + 9.4496I 0
u = 1.136680 + 0.439324I
a = 0.090083 + 0.191845I
b = 0.429435 0.933174I
8.67853 6.47962I 0
u = 1.136680 0.439324I
a = 0.090083 0.191845I
b = 0.429435 + 0.933174I
8.67853 + 6.47962I 0
u = 0.589457 + 1.073090I
a = 1.244540 + 0.275008I
b = 0.961256 + 0.001853I
3.34417 7.71939I 0
u = 0.589457 1.073090I
a = 1.244540 0.275008I
b = 0.961256 0.001853I
3.34417 + 7.71939I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.549505 + 1.110860I
a = 1.83815 0.80102I
b = 0.00021 + 1.66667I
15.3513 1.9660I 0
u = 0.549505 1.110860I
a = 1.83815 + 0.80102I
b = 0.00021 1.66667I
15.3513 + 1.9660I 0
u = 0.531675 + 1.124370I
a = 1.60443 + 1.00348I
b = 0.22168 1.70090I
15.1502 5.8509I 0
u = 0.531675 1.124370I
a = 1.60443 1.00348I
b = 0.22168 + 1.70090I
15.1502 + 5.8509I 0
u = 0.659458 + 1.055530I
a = 1.084660 + 0.021855I
b = 0.511231 + 0.533981I
0.76357 2.89451I 0
u = 0.659458 1.055530I
a = 1.084660 0.021855I
b = 0.511231 0.533981I
0.76357 + 2.89451I 0
u = 0.768976 + 0.991373I
a = 0.538655 0.226066I
b = 0.338115 + 0.361457I
1.20575 3.22169I 0
u = 0.768976 0.991373I
a = 0.538655 + 0.226066I
b = 0.338115 0.361457I
1.20575 + 3.22169I 0
u = 0.515057 + 1.166160I
a = 0.335827 + 0.059039I
b = 0.051286 + 0.785007I
0.420526 + 1.222690I 0
u = 0.515057 1.166160I
a = 0.335827 0.059039I
b = 0.051286 0.785007I
0.420526 1.222690I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.589468 + 1.138130I
a = 1.40884 + 0.26786I
b = 0.393655 0.809318I
1.81506 7.57460I 0
u = 0.589468 1.138130I
a = 1.40884 0.26786I
b = 0.393655 + 0.809318I
1.81506 + 7.57460I 0
u = 0.506572 + 0.508924I
a = 0.051904 + 0.850237I
b = 0.03144 + 1.76394I
17.2962 2.4742I 11.19134 + 0.I
u = 0.506572 0.508924I
a = 0.051904 0.850237I
b = 0.03144 1.76394I
17.2962 + 2.4742I 11.19134 + 0.I
u = 0.581550 + 0.398663I
a = 1.14962 1.44411I
b = 0.673429 + 0.256729I
5.22564 + 2.91137I 0
u = 0.581550 0.398663I
a = 1.14962 + 1.44411I
b = 0.673429 0.256729I
5.22564 2.91137I 0
u = 0.702104
a = 0.0149403
b = 0.530668
2.36953 2.18680
u = 0.463096 + 0.517128I
a = 0.332312 + 0.276180I
b = 0.12648 1.81097I
17.1693 + 1.5821I 9.06677 + 0.I
u = 0.463096 0.517128I
a = 0.332312 0.276180I
b = 0.12648 + 1.81097I
17.1693 1.5821I 9.06677 + 0.I
u = 0.801464 + 1.091750I
a = 0.675727 0.239048I
b = 0.00436 1.65785I
9.04989 1.08392I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.801464 1.091750I
a = 0.675727 + 0.239048I
b = 0.00436 + 1.65785I
9.04989 + 1.08392I 0
u = 0.624243 + 0.143897I
a = 0.08781 1.43506I
b = 0.356900 0.747079I
4.58359 3.00778I 6.62264 + 3.57380I
u = 0.624243 0.143897I
a = 0.08781 + 1.43506I
b = 0.356900 + 0.747079I
4.58359 + 3.00778I 6.62264 3.57380I
u = 0.979074 + 0.954928I
a = 0.873271 + 0.389712I
b = 0.226664 + 0.654722I
1.98964 + 5.22706I 0
u = 0.979074 0.954928I
a = 0.873271 0.389712I
b = 0.226664 0.654722I
1.98964 5.22706I 0
u = 0.170217 + 0.587957I
a = 1.45135 1.04929I
b = 0.255308 + 1.266040I
3.88298 1.55898I 2.33887 0.69081I
u = 0.170217 0.587957I
a = 1.45135 + 1.04929I
b = 0.255308 1.266040I
3.88298 + 1.55898I 2.33887 + 0.69081I
u = 0.715900 + 1.193850I
a = 1.346340 + 0.033763I
b = 0.639205 0.960912I
6.2881 + 12.9738I 0
u = 0.715900 1.193850I
a = 1.346340 0.033763I
b = 0.639205 + 0.960912I
6.2881 12.9738I 0
u = 0.67679 + 1.27080I
a = 1.44713 0.52505I
b = 0.10486 + 1.66021I
10.40900 + 9.46041I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.67679 1.27080I
a = 1.44713 + 0.52505I
b = 0.10486 1.66021I
10.40900 9.46041I 0
u = 0.423191 + 0.323713I
a = 3.90741 1.30925I
b = 0.13775 1.60269I
12.29310 4.85069I 9.24802 1.64947I
u = 0.423191 0.323713I
a = 3.90741 + 1.30925I
b = 0.13775 + 1.60269I
12.29310 + 4.85069I 9.24802 + 1.64947I
u = 1.35319 + 0.57009I
a = 0.031654 + 0.202799I
b = 0.12478 + 1.68712I
17.7750 + 8.6970I 0
u = 1.35319 0.57009I
a = 0.031654 0.202799I
b = 0.12478 1.68712I
17.7750 8.6970I 0
u = 1.12186 + 1.01046I
a = 1.081980 0.402723I
b = 0.06024 1.62586I
9.99812 6.26694I 0
u = 1.12186 1.01046I
a = 1.081980 + 0.402723I
b = 0.06024 + 1.62586I
9.99812 + 6.26694I 0
u = 0.82772 + 1.26829I
a = 1.386850 0.218529I
b = 0.18650 + 1.70350I
15.4171 16.2612I 0
u = 0.82772 1.26829I
a = 1.386850 + 0.218529I
b = 0.18650 1.70350I
15.4171 + 16.2612I 0
u = 0.99647 + 1.17539I
a = 1.077440 0.029336I
b = 0.13006 1.53156I
7.61147 + 5.15881I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.99647 1.17539I
a = 1.077440 + 0.029336I
b = 0.13006 + 1.53156I
7.61147 5.15881I 0
u = 0.31946 + 1.54507I
a = 0.290904 0.491644I
b = 0.169497 + 0.576494I
0.45796 2.24296I 0
u = 0.31946 1.54507I
a = 0.290904 + 0.491644I
b = 0.169497 0.576494I
0.45796 + 2.24296I 0
u = 0.094450 + 0.347629I
a = 1.083060 + 0.027982I
b = 0.238061 + 0.385513I
0.057577 0.845749I 1.55782 + 7.91922I
u = 0.094450 0.347629I
a = 1.083060 0.027982I
b = 0.238061 0.385513I
0.057577 + 0.845749I 1.55782 7.91922I
u = 0.223590 + 0.185780I
a = 5.03850 + 2.68271I
b = 0.298899 0.397572I
4.99353 2.88874I 8.80025 + 0.08168I
u = 0.223590 0.185780I
a = 5.03850 2.68271I
b = 0.298899 + 0.397572I
4.99353 + 2.88874I 8.80025 0.08168I
u = 0.31568 + 1.73340I
a = 0.334268 + 0.795016I
b = 0.04940 1.61951I
7.34037 + 3.05784I 0
u = 0.31568 1.73340I
a = 0.334268 0.795016I
b = 0.04940 + 1.61951I
7.34037 3.05784I 0
12
II.
I
u
2
= h1.42 × 10
9
u
23
5.92 × 10
9
u
22
+ · · · + 1.62 × 10
9
b 1.47 × 10
10
, 6.29 ×
10
8
u
23
2.39×10
9
u
22
+· · ·+1.62×10
9
a+1.03×10
9
, u
24
2u
23
+· · ·+12u
2
+1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
0.389388u
23
+ 1.48155u
22
+ ··· 8.36240u 0.635643
0.880265u
23
+ 3.65967u
22
+ ··· 10.7223u + 9.11906
a
10
=
u
u
3
+ u
a
4
=
1.11029u
23
8.99250u
22
+ ··· + 24.0625u 15.9479
1.70130u
23
2.71489u
22
+ ··· + 12.0591u + 6.90850
a
2
=
0.353192u
23
+ 1.58262u
22
+ ··· 4.71894u 6.32017
0.765620u
23
5.19111u
22
+ ··· + 18.5226u 12.7397
a
3
=
1.39273u
23
7.92747u
22
+ ··· + 24.2810u 10.6853
1.90068u
23
1.92430u
22
+ ··· + 11.9952u + 10.5412
a
8
=
5.67983u
23
11.0065u
22
+ ··· + 26.9581u + 9.71894
9.11906u
23
17.3579u
22
+ ··· + 26.2790u + 10.7223
a
12
=
1.26965u
23
+ 5.14122u
22
+ ··· 19.0847u + 8.48342
0.880265u
23
+ 3.65967u
22
+ ··· 10.7223u + 9.11906
a
7
=
4.58438u
23
+ 11.7095u
22
+ ··· 30.7654u + 6.86722
2.80359u
23
+ 4.69072u
22
+ ··· 10.2783u 10.3657
a
11
=
2.43201u
23
+ 2.14260u
22
+ ··· + 2.81556u 20.2898
1.88026u
23
5.65967u
22
+ ··· + 22.7223u 9.11906
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4436334991
1616424857
u
23
+
15330129255
1616424857
u
22
+ ··· +
4498778865
1616424857
u
12543205522
1616424857
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
4u
23
+ ··· 4u + 1
c
2
u
24
8u
22
+ ··· u + 1
c
3
u
24
+ 2u
22
+ ··· + u + 1
c
4
u
24
+ 4u
23
+ ··· + 4u + 1
c
5
u
24
2u
23
+ ··· + 12u
2
+ 1
c
6
, c
7
u
24
+ 17u
22
+ ··· 4u + 1
c
8
u
24
8u
22
+ ··· + u + 1
c
9
u
24
+ 2u
23
+ ··· + 12u
2
+ 1
c
10
u
24
4u
23
+ ··· + 4u + 5
c
11
, c
12
u
24
+ 17u
22
+ ··· + 4u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
24
+ 16y
23
+ ··· + 16y + 1
c
2
, c
8
y
24
16y
23
+ ··· 13y + 1
c
3
y
24
+ 4y
23
+ ··· + 19y + 1
c
5
, c
9
y
24
+ 18y
23
+ ··· + 24y + 1
c
6
, c
7
, c
11
c
12
y
24
+ 34y
23
+ ··· + 26y + 1
c
10
y
24
6y
23
+ ··· 346y + 25
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.160272 + 0.928469I
a = 1.48454 + 0.01654I
b = 0.187858 + 0.598400I
2.18760 0.64012I 1.24511 1.80764I
u = 0.160272 0.928469I
a = 1.48454 0.01654I
b = 0.187858 0.598400I
2.18760 + 0.64012I 1.24511 + 1.80764I
u = 0.449040 + 0.963265I
a = 1.374540 0.019153I
b = 0.07046 1.59657I
5.47588 + 1.65777I 0.454623 0.548546I
u = 0.449040 0.963265I
a = 1.374540 + 0.019153I
b = 0.07046 + 1.59657I
5.47588 1.65777I 0.454623 + 0.548546I
u = 0.570467 + 0.684424I
a = 2.89524 0.16670I
b = 0.12530 1.60732I
12.16410 5.54266I 6.98587 + 8.56567I
u = 0.570467 0.684424I
a = 2.89524 + 0.16670I
b = 0.12530 + 1.60732I
12.16410 + 5.54266I 6.98587 8.56567I
u = 0.479555 + 0.732326I
a = 0.374615 0.620422I
b = 0.279898 + 1.199200I
4.19925 + 2.43243I 5.43635 6.12529I
u = 0.479555 0.732326I
a = 0.374615 + 0.620422I
b = 0.279898 1.199200I
4.19925 2.43243I 5.43635 + 6.12529I
u = 0.350221 + 0.650854I
a = 3.00312 0.00735I
b = 0.448895 + 0.507705I
4.69789 + 3.44732I 2.06092 10.54280I
u = 0.350221 0.650854I
a = 3.00312 + 0.00735I
b = 0.448895 0.507705I
4.69789 3.44732I 2.06092 + 10.54280I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.822122 + 0.970775I
a = 0.912075 + 0.262087I
b = 0.275719 + 0.278983I
1.15532 4.50171I 2.54279 + 5.83668I
u = 0.822122 0.970775I
a = 0.912075 0.262087I
b = 0.275719 0.278983I
1.15532 + 4.50171I 2.54279 5.83668I
u = 0.294306 + 1.281330I
a = 0.416939 1.037610I
b = 0.078720 + 1.178880I
1.85656 + 1.20382I 8.09771 + 0.42923I
u = 0.294306 1.281330I
a = 0.416939 + 1.037610I
b = 0.078720 1.178880I
1.85656 1.20382I 8.09771 0.42923I
u = 0.105806 + 0.578997I
a = 2.63514 0.23656I
b = 0.470964 + 0.978144I
6.19126 0.16242I 5.95278 0.65654I
u = 0.105806 0.578997I
a = 2.63514 + 0.23656I
b = 0.470964 0.978144I
6.19126 + 0.16242I 5.95278 + 0.65654I
u = 0.39847 + 1.46021I
a = 0.019571 + 0.179554I
b = 0.103475 + 0.331589I
0.91882 1.89712I 5.02429 0.65918I
u = 0.39847 1.46021I
a = 0.019571 0.179554I
b = 0.103475 0.331589I
0.91882 + 1.89712I 5.02429 + 0.65918I
u = 0.106329 + 0.426026I
a = 1.48004 0.33083I
b = 0.07142 1.80067I
16.6857 2.1538I 0.41567 + 2.69228I
u = 0.106329 0.426026I
a = 1.48004 + 0.33083I
b = 0.07142 + 1.80067I
16.6857 + 2.1538I 0.41567 2.69228I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.09903 + 1.18765I
a = 0.987243 0.118597I
b = 0.08478 1.52295I
7.48218 + 5.77748I 3.90381 10.03254I
u = 1.09903 1.18765I
a = 0.987243 + 0.118597I
b = 0.08478 + 1.52295I
7.48218 5.77748I 3.90381 + 10.03254I
u = 0.49131 + 1.56091I
a = 0.277906 + 0.238179I
b = 0.03567 1.54322I
5.70577 + 2.41144I 1.17187 2.39550I
u = 0.49131 1.56091I
a = 0.277906 0.238179I
b = 0.03567 + 1.54322I
5.70577 2.41144I 1.17187 + 2.39550I
18
III. I
u
3
= ha
5
u 6a
3
u + · · · 6a 4, 3a
3
u + 3a
2
u + · · · + 3a 2, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u 1
a
1
=
a
1
3
a
5
u + 2a
3
u + ··· + 2a +
4
3
a
10
=
u
u 1
a
4
=
1
3
a
3
u
1
3
a
2
u + ··· +
8
3
a +
4
3
1
3
a
2
u
1
3
a
2
+
2
3
u +
2
3
a
2
=
2
3
a
3
u +
7
3
au + ···
2
3
a 1
1
3
a
3
u +
5
3
au + ···
7
3
a 1
a
3
=
1
3
a
2
u
2
3
a
2
2
3
u +
4
3
1
3
a
5
u +
1
3
a
4
u + ··· +
1
3
a + 2
a
8
=
1
3
a
4
+
4
3
a
2
4
3
1
3
a
5
u
2
3
a
4
u + ···
1
3
a
4
3
a
12
=
1
3
a
5
u + 2a
3
u + ··· + 3a +
4
3
1
3
a
5
u + 2a
3
u + ··· + 2a +
4
3
a
7
=
1
3
a
5
u +
1
3
a
4
u + ··· a
2
+
1
3
a
1
3
a
5
u +
1
3
a
4
u + ··· + 3a
2
3
a
11
=
2
3
a
3
u
7
3
au + ··· +
2
3
a + 1
1
3
a
3
u
2
3
a
3
5
3
au +
7
3
a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 10
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
12
+ 4u
10
+ ··· 10u + 7
c
2
, c
8
u
12
4u
10
+ ··· + 20u + 7
c
3
u
12
8u
11
+ ··· 8u
2
+ 1
c
5
, c
9
(u
2
+ u + 1)
6
c
6
, c
7
, c
11
c
12
u
12
+ 8u
10
+ ··· 6u + 13
c
10
(u + 1)
12
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
12
+ 8y
11
+ ··· + 292y + 49
c
2
, c
8
y
12
8y
11
+ ··· 120y + 49
c
3
y
12
8y
11
+ ··· 16y + 1
c
5
, c
9
(y
2
+ y + 1)
6
c
6
, c
7
, c
11
c
12
y
12
+ 16y
11
+ ··· + 1108y + 169
c
10
(y 1)
12
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.724321 0.650848I
b = 0.719959 + 1.112490I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.032580 + 0.148538I
b = 0.07514 1.53325I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.110864 0.292048I
b = 0.030499 1.218920I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.84992 + 0.64143I
b = 0.04911 + 1.65057I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 + 0.866025I
a = 2.03582 0.30303I
b = 0.744942 + 0.795979I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 + 0.866025I
a = 2.01797 + 0.45596I
b = 0.031549 0.806876I
6.57974 + 2.02988I 8.00000 3.46410I
u = 0.500000 0.866025I
a = 0.724321 + 0.650848I
b = 0.719959 1.112490I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.032580 0.148538I
b = 0.07514 + 1.53325I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.110864 + 0.292048I
b = 0.030499 + 1.218920I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.84992 0.64143I
b = 0.04911 1.65057I
6.57974 2.02988I 8.00000 + 3.46410I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 2.03582 + 0.30303I
b = 0.744942 0.795979I
6.57974 2.02988I 8.00000 + 3.46410I
u = 0.500000 0.866025I
a = 2.01797 0.45596I
b = 0.031549 + 0.806876I
6.57974 2.02988I 8.00000 + 3.46410I
23
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 4u
10
+ ··· 10u + 7)(u
24
4u
23
+ ··· 4u + 1)
· (u
79
5u
78
+ ··· + 212u 41)
c
2
(u
12
4u
10
+ ··· + 20u + 7)(u
24
8u
22
+ ··· u + 1)
· (u
79
u
78
+ ··· + 765u 241)
c
3
(u
12
8u
11
+ ··· 8u
2
+ 1)(u
24
+ 2u
22
+ ··· + u + 1)
· (u
79
+ 9u
78
+ ··· + 2805u 271)
c
4
(u
12
+ 4u
10
+ ··· 10u + 7)(u
24
+ 4u
23
+ ··· + 4u + 1)
· (u
79
5u
78
+ ··· + 212u 41)
c
5
((u
2
+ u + 1)
6
)(u
24
2u
23
+ ··· + 12u
2
+ 1)
· (u
79
9u
78
+ ··· + 312u 16)
c
6
, c
7
(u
12
+ 8u
10
+ ··· 6u + 13)(u
24
+ 17u
22
+ ··· 4u + 1)
· (u
79
+ u
78
+ ··· + 56u 11)
c
8
(u
12
4u
10
+ ··· + 20u + 7)(u
24
8u
22
+ ··· + u + 1)
· (u
79
u
78
+ ··· + 765u 241)
c
9
((u
2
+ u + 1)
6
)(u
24
+ 2u
23
+ ··· + 12u
2
+ 1)
· (u
79
9u
78
+ ··· + 312u 16)
c
10
((u + 1)
12
)(u
24
4u
23
+ ··· + 4u + 5)
· (u
79
15u
78
+ ··· 99261632u + 6792448)
c
11
, c
12
(u
12
+ 8u
10
+ ··· 6u + 13)(u
24
+ 17u
22
+ ··· + 4u + 1)
· (u
79
+ u
78
+ ··· + 56u 11)
24
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
12
+ 8y
11
+ ··· + 292y + 49)(y
24
+ 16y
23
+ ··· + 16y + 1)
· (y
79
+ 55y
78
+ ··· 61082y 1681)
c
2
, c
8
(y
12
8y
11
+ ··· 120y + 49)(y
24
16y
23
+ ··· 13y + 1)
· (y
79
61y
78
+ ··· + 942387y 58081)
c
3
(y
12
8y
11
+ ··· 16y + 1)(y
24
+ 4y
23
+ ··· + 19y + 1)
· (y
79
5y
78
+ ··· + 2781355y 73441)
c
5
, c
9
((y
2
+ y + 1)
6
)(y
24
+ 18y
23
+ ··· + 24y + 1)
· (y
79
+ 39y
78
+ ··· 4928y 256)
c
6
, c
7
, c
11
c
12
(y
12
+ 16y
11
+ ··· + 1108y + 169)(y
24
+ 34y
23
+ ··· + 26y + 1)
· (y
79
+ 101y
78
+ ··· 2100y 121)
c
10
((y 1)
12
)(y
24
6y
23
+ ··· 346y + 25)
· (y
79
39y
78
+ ··· + 546186244640768y 46137349832704)
25