12a
1157
(K12a
1157
)
A knot diagram
1
Linearized knot diagam
4 9 8 10 11 12 1 3 2 5 6 7
Solving Sequence
6,11
12 7 1 8 5 10 4 2 3 9
c
11
c
6
c
12
c
7
c
5
c
10
c
4
c
1
c
3
c
9
c
2
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
19
+ u
18
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 19 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
19
+ u
18
+ · · · 2u 1i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
3
2u
u
5
3u
3
+ u
a
5
=
u
u
a
10
=
u
2
+ 1
u
2
a
4
=
u
3
+ 2u
u
3
+ u
a
2
=
u
10
7u
8
+ 16u
6
13u
4
+ u
2
+ 1
u
10
6u
8
+ 11u
6
8u
4
+ 3u
2
a
3
=
u
11
+ 8u
9
22u
7
+ 24u
5
9u
3
+ 2u
u
13
+ 9u
11
29u
9
+ 40u
7
22u
5
+ 3u
3
+ u
a
9
=
u
18
+ 13u
16
+ ··· + 3u
2
+ 1
u
18
+ 12u
16
57u
14
+ 138u
12
185u
10
+ 142u
8
62u
6
+ 12u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
14
44u
12
+ 184u
10
364u
8
+ 4u
7
+ 344u
6
24u
5
136u
4
+ 40u
3
+ 16u
2
16u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
7u
18
+ ··· + 72u 41
c
2
, c
3
, c
8
c
9
u
19
+ u
18
+ ··· 2u 1
c
4
, c
5
, c
6
c
7
, c
10
, c
11
c
12
u
19
+ u
18
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
17y
18
+ ··· + 26586y 1681
c
2
, c
3
, c
8
c
9
y
19
+ 23y
18
+ ··· 2y 1
c
4
, c
5
, c
6
c
7
, c
10
, c
11
c
12
y
19
29y
18
+ ··· 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.845643 + 0.288890I
10.86190 + 3.90709I 14.5654 4.4789I
u = 0.845643 0.288890I
10.86190 3.90709I 14.5654 + 4.4789I
u = 0.747058 + 0.191235I
2.97563 2.48429I 13.4435 + 6.6309I
u = 0.747058 0.191235I
2.97563 + 2.48429I 13.4435 6.6309I
u = 1.35365
7.74124 9.76410
u = 1.387880 + 0.077610I
10.14090 + 3.44117I 14.0567 4.3682I
u = 1.387880 0.077610I
10.14090 3.44117I 14.0567 + 4.3682I
u = 0.604746
1.09372 8.26920
u = 1.43278 + 0.12906I
18.5196 5.4586I 15.6445 + 3.0996I
u = 1.43278 0.12906I
18.5196 + 5.4586I 15.6445 3.0996I
u = 0.263289 + 0.450878I
7.42738 1.46197I 9.51323 + 3.95730I
u = 0.263289 0.450878I
7.42738 + 1.46197I 9.51323 3.95730I
u = 0.156591 + 0.294132I
0.229049 + 0.841361I 5.82037 7.86296I
u = 0.156591 0.294132I
0.229049 0.841361I 5.82037 + 7.86296I
u = 1.83296
19.7038 10.2700
u = 1.83960 + 0.01849I
17.2008 3.9150I 14.0216 + 3.6447I
u = 1.83960 0.01849I
17.2008 + 3.9150I 14.0216 3.6447I
u = 1.85060 + 0.03225I
8.56699 + 6.28958I 15.7829 2.5323I
u = 1.85060 0.03225I
8.56699 6.28958I 15.7829 + 2.5323I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
19
7u
18
+ ··· + 72u 41
c
2
, c
3
, c
8
c
9
u
19
+ u
18
+ ··· 2u 1
c
4
, c
5
, c
6
c
7
, c
10
, c
11
c
12
u
19
+ u
18
+ ··· 2u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
19
17y
18
+ ··· + 26586y 1681
c
2
, c
3
, c
8
c
9
y
19
+ 23y
18
+ ··· 2y 1
c
4
, c
5
, c
6
c
7
, c
10
, c
11
c
12
y
19
29y
18
+ ··· 2y 1
7