12a
1158
(K12a
1158
)
A knot diagram
1
Linearized knot diagam
4 9 8 10 11 12 1 3 2 5 7 6
Solving Sequence
7,11
12 6 1 8 5 10 4 2 3 9
c
11
c
6
c
12
c
7
c
5
c
10
c
4
c
1
c
3
c
9
c
2
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
38
u
37
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
38
u
37
+ · · · u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
5
=
u
3
+ 2u
u
3
+ u
a
10
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
4
=
u
9
4u
7
5u
5
+ 3u
u
9
3u
7
3u
5
+ u
a
2
=
u
22
9u
20
+ ··· + 4u
2
+ 1
u
22
8u
20
+ ··· 4u
4
+ 3u
2
a
3
=
u
21
8u
19
+ ··· 4u
3
+ 3u
u
23
9u
21
+ ··· + 4u
3
+ u
a
9
=
u
37
14u
35
+ ··· + 10u
3
u
u
37
+ u
36
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
36
+ 4u
35
56u
34
+ 52u
33
352u
32
+ 304u
31
1276u
30
+ 1024u
29
2804u
28
+
2080u
27
3336u
26
+ 2240u
25
364u
24
+ 36u
23
+ 5244u
22
3388u
21
+ 7232u
20
4040u
19
+
1692u
18
560u
17
5000u
16
+ 2612u
15
4528u
14
+ 1744u
13
+ 384u
12
536u
11
+
2024u
10
736u
9
+ 416u
8
+ 104u
7
368u
6
+ 192u
5
84u
4
12u
3
+ 24u
2
12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
38
13u
37
+ ··· 3409u + 723
c
2
, c
3
, c
8
c
9
u
38
+ u
37
+ ··· u 1
c
4
, c
5
, c
7
c
10
u
38
+ u
37
+ ··· 9u 5
c
6
, c
11
, c
12
u
38
u
37
+ ··· u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
38
27y
37
+ ··· 8344645y + 522729
c
2
, c
3
, c
8
c
9
y
38
+ 45y
37
+ ··· + 3y + 1
c
4
, c
5
, c
7
c
10
y
38
47y
37
+ ··· 41y + 25
c
6
, c
11
, c
12
y
38
+ 29y
37
+ ··· + 3y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.921549 + 0.026814I
19.0082 5.9978I 13.8808 + 2.7631I
u = 0.921549 0.026814I
19.0082 + 5.9978I 13.8808 2.7631I
u = 0.910401 + 0.016742I
11.94600 + 3.74112I 12.20309 3.92212I
u = 0.910401 0.016742I
11.94600 3.74112I 12.20309 + 3.92212I
u = 0.902816
9.44212 8.29230
u = 0.295584 + 1.071570I
8.32513 0.58329I 10.41542 0.50010I
u = 0.295584 1.071570I
8.32513 + 0.58329I 10.41542 + 0.50010I
u = 0.220657 + 1.122970I
0.206300 0.496209I 9.24627 0.65693I
u = 0.220657 1.122970I
0.206300 + 0.496209I 9.24627 + 0.65693I
u = 0.203175 + 1.232690I
2.53092 + 2.66616I 0.99392 3.01578I
u = 0.203175 1.232690I
2.53092 2.66616I 0.99392 + 3.01578I
u = 0.033249 + 1.263780I
4.26230 + 1.45522I 1.17782 5.08792I
u = 0.033249 1.263780I
4.26230 1.45522I 1.17782 + 5.08792I
u = 0.247059 + 1.268440I
1.06826 5.79649I 5.38275 + 8.72620I
u = 0.247059 1.268440I
1.06826 + 5.79649I 5.38275 8.72620I
u = 0.689534 + 0.138578I
11.05530 + 4.25242I 13.45193 4.29885I
u = 0.689534 0.138578I
11.05530 4.25242I 13.45193 + 4.29885I
u = 0.087911 + 1.303620I
2.26439 2.76931I 3.18945 + 3.50256I
u = 0.087911 1.303620I
2.26439 + 2.76931I 3.18945 3.50256I
u = 0.275003 + 1.294930I
6.60950 + 7.69625I 7.73538 6.48615I
u = 0.275003 1.294930I
6.60950 7.69625I 7.73538 + 6.48615I
u = 0.456153 + 1.266600I
16.6317 + 1.0857I 10.74929 + 0.I
u = 0.456153 1.266600I
16.6317 1.0857I 10.74929 + 0.I
u = 0.443090 + 1.271380I
8.05649 + 1.09065I 9.00721 + 0.I
u = 0.443090 1.271380I
8.05649 1.09065I 9.00721 + 0.I
u = 0.432187 + 1.283350I
5.45541 4.77115I 4.00000 + 2.96319I
u = 0.432187 1.283350I
5.45541 + 4.77115I 4.00000 2.96319I
u = 0.626097 + 0.102774I
3.13828 2.66124I 12.32538 + 6.29351I
u = 0.626097 0.102774I
3.13828 + 2.66124I 12.32538 6.29351I
u = 0.433822 + 1.297770I
7.85499 + 8.54454I 8.56346 6.86027I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.433822 1.297770I
7.85499 8.54454I 8.56346 + 6.86027I
u = 0.438829 + 1.307920I
16.3117 10.8564I 10.31831 + 5.56337I
u = 0.438829 1.307920I
16.3117 + 10.8564I 10.31831 5.56337I
u = 0.354367 + 0.402887I
7.36308 1.41419I 9.22771 + 4.33033I
u = 0.354367 0.402887I
7.36308 + 1.41419I 9.22771 4.33033I
u = 0.535584
1.19956 7.62450
u = 0.184566 + 0.290087I
0.222289 + 0.830054I 5.72806 8.07347I
u = 0.184566 0.290087I
0.222289 0.830054I 5.72806 + 8.07347I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
38
13u
37
+ ··· 3409u + 723
c
2
, c
3
, c
8
c
9
u
38
+ u
37
+ ··· u 1
c
4
, c
5
, c
7
c
10
u
38
+ u
37
+ ··· 9u 5
c
6
, c
11
, c
12
u
38
u
37
+ ··· u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
38
27y
37
+ ··· 8344645y + 522729
c
2
, c
3
, c
8
c
9
y
38
+ 45y
37
+ ··· + 3y + 1
c
4
, c
5
, c
7
c
10
y
38
47y
37
+ ··· 41y + 25
c
6
, c
11
, c
12
y
38
+ 29y
37
+ ··· + 3y + 1
8