12a
1159
(K12a
1159
)
A knot diagram
1
Linearized knot diagam
4 9 8 10 11 12 1 3 2 7 6 5
Solving Sequence
5,11
6 12 7 1 8 10 4 2 3 9
c
5
c
11
c
6
c
12
c
7
c
10
c
4
c
1
c
3
c
9
c
2
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
56
+ u
55
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
56
+ u
55
+ · · · + 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
3
2u
u
3
+ u
a
8
=
u
10
5u
8
+ 8u
6
3u
4
3u
2
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
10
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
4
=
u
12
+ 5u
10
9u
8
+ 6u
6
u
2
+ 1
u
14
+ 6u
12
13u
10
+ 10u
8
+ 2u
6
4u
4
u
2
a
2
=
u
29
12u
27
+ ··· + 6u
3
3u
u
31
13u
29
+ ··· 24u
7
+ u
a
3
=
u
34
15u
32
+ ··· + 3u
2
+ 1
u
34
+ 14u
32
+ ··· + 8u
4
u
2
a
9
=
u
53
22u
51
+ ··· 14u
3
+ u
u
55
23u
53
+ ··· + 6u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
54
+ 92u
52
+ ··· + 24u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
17u
55
+ ··· 14056u + 1697
c
2
, c
3
, c
8
c
9
u
56
+ u
55
+ ··· 2u 1
c
4
, c
7
u
56
+ u
55
+ ··· 104u 61
c
5
, c
6
, c
11
u
56
u
55
+ ··· 2u 1
c
10
, c
12
u
56
+ 3u
55
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
23y
55
+ ··· 40096324y + 2879809
c
2
, c
3
, c
8
c
9
y
56
+ 65y
55
+ ··· + 4y + 1
c
4
, c
7
y
56
43y
55
+ ··· 18624y + 3721
c
5
, c
6
, c
11
y
56
47y
55
+ ··· + 4y + 1
c
10
, c
12
y
56
+ 29y
55
+ ··· + 4y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.007390 + 0.299100I
11.32590 + 5.07175I 10.41136 2.14928I
u = 1.007390 0.299100I
11.32590 5.07175I 10.41136 + 2.14928I
u = 1.037430 + 0.256406I
3.34884 2.95517I 8.35409 + 4.14686I
u = 1.037430 0.256406I
3.34884 + 2.95517I 8.35409 4.14686I
u = 1.121000 + 0.214806I
1.62413 0.33326I 0
u = 1.121000 0.214806I
1.62413 + 0.33326I 0
u = 0.755198 + 0.276814I
11.72800 4.92772I 11.51035 + 4.25849I
u = 0.755198 0.276814I
11.72800 + 4.92772I 11.51035 4.25849I
u = 0.174335 + 0.780042I
8.76893 9.11894I 7.30154 + 6.10227I
u = 0.174335 0.780042I
8.76893 + 9.11894I 7.30154 6.10227I
u = 0.163772 + 0.768213I
0.71389 + 6.86037I 5.12714 7.81567I
u = 0.163772 0.768213I
0.71389 6.86037I 5.12714 + 7.81567I
u = 0.056015 + 0.774634I
2.40652 + 3.39994I 2.99197 3.55207I
u = 0.056015 0.774634I
2.40652 3.39994I 2.99197 + 3.55207I
u = 0.150274 + 0.747044I
1.16768 3.31828I 1.06642 + 3.30903I
u = 0.150274 0.747044I
1.16768 + 3.31828I 1.06642 3.30903I
u = 0.019950 + 0.754347I
4.06747 1.63438I 1.40261 + 4.57782I
u = 0.019950 0.754347I
4.06747 + 1.63438I 1.40261 4.57782I
u = 0.728627 + 0.195550I
3.63602 + 3.02560I 10.17603 5.79656I
u = 0.728627 0.195550I
3.63602 3.02560I 10.17603 + 5.79656I
u = 1.205440 + 0.317841I
5.92121 + 0.55972I 0
u = 1.205440 0.317841I
5.92121 0.55972I 0
u = 0.210116 + 0.707797I
9.83896 + 1.27867I 8.53672 + 1.04653I
u = 0.210116 0.707797I
9.83896 1.27867I 8.53672 1.04653I
u = 1.254520 + 0.166796I
4.29080 + 2.46551I 0
u = 1.254520 0.166796I
4.29080 2.46551I 0
u = 0.174059 + 0.708931I
1.55154 + 0.37866I 6.90408 + 0.22967I
u = 0.174059 0.708931I
1.55154 0.37866I 6.90408 0.22967I
u = 1.247700 + 0.308289I
0.28331 2.20403I 0
u = 1.247700 0.308289I
0.28331 + 2.20403I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.276230 + 0.317717I
0.03967 + 5.50640I 0
u = 1.276230 0.317717I
0.03967 5.50640I 0
u = 1.323630 + 0.151327I
12.15060 3.21011I 0
u = 1.323630 0.151327I
12.15060 + 3.21011I 0
u = 0.662825
1.52718 5.96610
u = 1.297740 + 0.332753I
6.63103 7.39587I 0
u = 1.297740 0.332753I
6.63103 + 7.39587I 0
u = 1.354420 + 0.316273I
3.57922 + 7.17640I 0
u = 1.354420 0.316273I
3.57922 7.17640I 0
u = 1.359410 + 0.299615I
6.38721 4.05791I 0
u = 1.359410 0.299615I
6.38721 + 4.05791I 0
u = 1.362120 + 0.324699I
5.53028 10.81760I 0
u = 1.362120 0.324699I
5.53028 + 10.81760I 0
u = 1.40068
7.76419 0
u = 1.372010 + 0.293076I
14.8334 + 2.3638I 0
u = 1.372010 0.293076I
14.8334 2.3638I 0
u = 1.368570 + 0.329070I
13.6427 + 13.1311I 0
u = 1.368570 0.329070I
13.6427 13.1311I 0
u = 1.411120 + 0.016554I
10.10810 3.41472I 0
u = 1.411120 0.016554I
10.10810 + 3.41472I 0
u = 1.42291 + 0.02306I
18.4140 + 5.4847I 0
u = 1.42291 0.02306I
18.4140 5.4847I 0
u = 0.343458 + 0.381016I
7.13429 + 1.35752I 8.42167 4.66731I
u = 0.343458 0.381016I
7.13429 1.35752I 8.42167 + 4.66731I
u = 0.186399 + 0.279972I
0.195308 0.800076I 5.29681 + 8.55548I
u = 0.186399 0.279972I
0.195308 + 0.800076I 5.29681 8.55548I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
56
17u
55
+ ··· 14056u + 1697
c
2
, c
3
, c
8
c
9
u
56
+ u
55
+ ··· 2u 1
c
4
, c
7
u
56
+ u
55
+ ··· 104u 61
c
5
, c
6
, c
11
u
56
u
55
+ ··· 2u 1
c
10
, c
12
u
56
+ 3u
55
+ ··· + 4u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
56
23y
55
+ ··· 40096324y + 2879809
c
2
, c
3
, c
8
c
9
y
56
+ 65y
55
+ ··· + 4y + 1
c
4
, c
7
y
56
43y
55
+ ··· 18624y + 3721
c
5
, c
6
, c
11
y
56
47y
55
+ ··· + 4y + 1
c
10
, c
12
y
56
+ 29y
55
+ ··· + 4y + 1
8