12a
1160
(K12a
1160
)
A knot diagram
1
Linearized knot diagam
4 9 8 10 11 1 12 3 2 6 5 7
Solving Sequence
6,10
11 5 12
2,4
1 7 9 3 8
c
10
c
5
c
11
c
4
c
1
c
6
c
9
c
2
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
22
u
21
+ ··· + 4b 1, u
22
u
21
+ ··· + 4a 5, u
23
+ 12u
21
+ ··· + 2u + 1i
I
u
2
= h−408137340u
35
+ 324289774u
34
+ ··· + 922017653b + 2937229108,
670648626u
35
875070234u
34
+ ··· + 4610088265a + 20077281071, u
36
u
35
+ ··· 6u + 5i
I
u
3
= hb a 1, a
2
+ au + 2a + u + 2, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
22
u
21
+· · ·+4b1, u
22
u
21
+· · ·+4a5, u
23
+12u
21
+· · ·+2u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
1
4
u
22
+
1
4
u
21
+ ··· +
1
4
u +
5
4
1
4
u
22
+
1
4
u
21
+ ··· +
1
4
u +
1
4
a
4
=
u
3
+ 2u
u
3
+ u
a
1
=
1
1
4
u
22
+
1
4
u
21
+ ··· +
1
4
u +
1
4
a
7
=
u
1
4
u
22
1
4
u
21
+ ··· +
1
4
u
1
4
a
9
=
1
4
u
22
+
3
4
u
21
+ ··· +
5
4
u +
5
4
1
2
u
22
+
1
2
u
21
+ ··· +
5
2
u
2
+ u
a
3
=
1
4
u
22
+
1
4
u
21
+ ···
5
4
u +
1
4
1
2
u
22
+ 5u
20
+ ··· 2u
1
2
a
8
=
u
3
2u
1
4
u
22
1
4
u
21
+ ··· +
1
4
u
1
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
22
+ 3u
21
23u
20
+ 30u
19
109u
18
+ 121u
17
261u
16
+ 235u
15
283u
14
+ 172u
13
+
27u
12
104u
11
+343u
10
197u
9
+172u
8
+30u
7
140u
6
+113u
5
79u
4
6u
3
+31u
2
13u6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
7u
22
+ ··· + 43u 136
c
2
, c
3
, c
8
c
9
u
23
+ 3u
22
+ ··· + 9u + 2
c
4
u
23
+ 3u
22
+ ··· + 112u + 32
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
23
+ 12u
21
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
9y
22
+ ··· + 119625y 18496
c
2
, c
3
, c
8
c
9
y
23
+ 27y
22
+ ··· 19y 4
c
4
y
23
7y
22
+ ··· 14592y 1024
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
23
+ 24y
22
+ ··· 8y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.795316 + 0.139636I
a = 1.23282 + 3.11375I
b = 0.11231 + 1.61312I
11.42090 + 4.87039I 11.90567 3.91229I
u = 0.795316 0.139636I
a = 1.23282 3.11375I
b = 0.11231 1.61312I
11.42090 4.87039I 11.90567 + 3.91229I
u = 0.718532 + 0.110969I
a = 0.38913 1.64647I
b = 0.394058 0.727871I
3.42109 2.97216I 10.73203 + 5.72082I
u = 0.718532 0.110969I
a = 0.38913 + 1.64647I
b = 0.394058 + 0.727871I
3.42109 + 2.97216I 10.73203 5.72082I
u = 0.220634 + 1.266720I
a = 0.15139 + 1.88506I
b = 0.05656 + 1.66965I
4.81649 2.32088I 2.94517 + 3.80722I
u = 0.220634 1.266720I
a = 0.15139 1.88506I
b = 0.05656 1.66965I
4.81649 + 2.32088I 2.94517 3.80722I
u = 0.235589 + 1.349070I
a = 0.046253 0.742212I
b = 0.290628 0.964242I
4.32338 + 3.54350I 1.78201 1.89735I
u = 0.235589 1.349070I
a = 0.046253 + 0.742212I
b = 0.290628 + 0.964242I
4.32338 3.54350I 1.78201 + 1.89735I
u = 0.619298
a = 0.221043
b = 0.485803
1.38664 6.71120
u = 0.29349 + 1.39778I
a = 0.304987 0.309207I
b = 0.661665 + 0.171016I
7.94839 6.78325I 2.61504 + 3.60698I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.29349 1.39778I
a = 0.304987 + 0.309207I
b = 0.661665 0.171016I
7.94839 + 6.78325I 2.61504 3.60698I
u = 0.324994 + 0.458228I
a = 1.39871 + 1.17755I
b = 0.01682 + 1.57006I
7.31537 1.33361I 8.98283 + 4.93247I
u = 0.324994 0.458228I
a = 1.39871 1.17755I
b = 0.01682 1.57006I
7.31537 + 1.33361I 8.98283 4.93247I
u = 0.33865 + 1.40078I
a = 0.985685 + 0.972690I
b = 0.541575 + 0.731096I
6.29016 + 10.83400I 0.76204 8.37253I
u = 0.33865 1.40078I
a = 0.985685 0.972690I
b = 0.541575 0.731096I
6.29016 10.83400I 0.76204 + 8.37253I
u = 0.37468 + 1.39854I
a = 1.79865 1.50732I
b = 0.16169 1.61532I
1.65587 13.48220I 3.40425 + 7.15692I
u = 0.37468 1.39854I
a = 1.79865 + 1.50732I
b = 0.16169 + 1.61532I
1.65587 + 13.48220I 3.40425 7.15692I
u = 0.03245 + 1.46555I
a = 0.722690 + 0.188147I
b = 0.607538 + 0.467437I
11.47900 2.05502I 3.85436 + 3.36506I
u = 0.03245 1.46555I
a = 0.722690 0.188147I
b = 0.607538 0.467437I
11.47900 + 2.05502I 3.85436 3.36506I
u = 0.11357 + 1.47084I
a = 0.835309 0.504420I
b = 0.15177 1.45959I
5.25690 + 4.76865I 0.07437 3.33797I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.11357 1.47084I
a = 0.835309 + 0.504420I
b = 0.15177 + 1.45959I
5.25690 4.76865I 0.07437 + 3.33797I
u = 0.172016 + 0.292715I
a = 0.946386 0.302788I
b = 0.185253 0.470231I
0.217442 + 0.818533I 5.67418 8.29419I
u = 0.172016 0.292715I
a = 0.946386 + 0.302788I
b = 0.185253 + 0.470231I
0.217442 0.818533I 5.67418 + 8.29419I
7
II.
I
u
2
= h−4.08 × 10
8
u
35
+ 3.24 × 10
8
u
34
+ · · · + 9.22 × 10
8
b + 2.94 × 10
9
, 6.71 ×
10
8
u
35
8.75×10
8
u
34
+· · ·+4.61× 10
9
a+2.01×10
10
, u
36
u
35
+· · ·6u + 5i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.145474u
35
+ 0.189816u
34
+ ··· 3.47613u 4.35508
0.442657u
35
0.351718u
34
+ ··· 0.393933u 3.18565
a
4
=
u
3
+ 2u
u
3
+ u
a
1
=
0.321589u
35
0.0247378u
34
+ ··· 1.86241u 3.15812
0.572267u
35
0.478600u
34
+ ··· + 0.173162u 2.48425
a
7
=
0.0968510u
35
+ 0.475416u
34
+ ··· + 1.37142u 0.407944
0.390518u
35
0.397188u
34
+ ··· + 2.72077u 4.46928
a
9
=
1.10604u
35
0.316499u
34
+ ··· 4.24898u 8.08013
0.177951u
35
0.286241u
34
+ ··· 0.437593u 2.21383
a
3
=
0.941357u
35
+ 0.248450u
34
+ ··· 0.356152u + 5.95006
0.486293u
35
0.253941u
34
+ ··· + 2.85704u + 4.40381
a
8
=
0.293667u
35
+ 0.872605u
34
+ ··· + 0.650651u + 4.06134
0.0991121u
35
0.145616u
34
+ ··· + 2.76403u 1.64129
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1541755780
922017653
u
35
+
320087608
922017653
u
34
+ ···
3188285292
922017653
u
2738892350
922017653
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
18
5u
17
+ ··· 13u + 3)
2
c
2
, c
3
, c
8
c
9
(u
18
u
17
+ ··· u + 1)
2
c
4
(u
18
u
17
+ ··· u + 5)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
36
u
35
+ ··· 6u + 5
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
18
3y
17
+ ··· + 5y + 9)
2
c
2
, c
3
, c
8
c
9
(y
18
+ 21y
17
+ ··· + y + 1)
2
c
4
(y
18
7y
17
+ ··· 91y + 25)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
36
+ 27y
35
+ ··· 116y + 25
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.457072 + 0.967947I
a = 0.164693 0.563129I
b = 0.417636 0.610136I
3.38528 2.06052I 0.97721 + 4.27827I
u = 0.457072 0.967947I
a = 0.164693 + 0.563129I
b = 0.417636 + 0.610136I
3.38528 + 2.06052I 0.97721 4.27827I
u = 0.885943 + 0.199664I
a = 1.00940 + 2.98114I
b = 0.13939 + 1.60559I
6.71673 8.95499I 7.02415 + 5.84784I
u = 0.885943 0.199664I
a = 1.00940 2.98114I
b = 0.13939 1.60559I
6.71673 + 8.95499I 7.02415 5.84784I
u = 0.656938 + 0.600932I
a = 0.91310 + 2.10115I
b = 0.04262 + 1.48330I
1.65768 + 2.36433I 3.03894 3.34702I
u = 0.656938 0.600932I
a = 0.91310 2.10115I
b = 0.04262 1.48330I
1.65768 2.36433I 3.03894 + 3.34702I
u = 0.445816 + 0.746695I
a = 0.264214 0.816201I
b = 0.434512 0.328358I
4.20760 0.97328I 2.11395 + 4.55184I
u = 0.445816 0.746695I
a = 0.264214 + 0.816201I
b = 0.434512 + 0.328358I
4.20760 + 0.97328I 2.11395 4.55184I
u = 0.823348 + 0.228873I
a = 0.22766 1.48393I
b = 0.480218 0.701439I
1.11805 + 6.64525I 4.64041 7.71274I
u = 0.823348 0.228873I
a = 0.22766 + 1.48393I
b = 0.480218 + 0.701439I
1.11805 6.64525I 4.64041 + 7.71274I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.347542 + 1.103030I
a = 0.28849 + 1.82343I
b = 0.07596 + 1.61798I
8.50059 0.69909I 9.38255 0.31146I
u = 0.347542 1.103030I
a = 0.28849 1.82343I
b = 0.07596 1.61798I
8.50059 + 0.69909I 9.38255 + 0.31146I
u = 0.517613 + 1.064580I
a = 0.39272 + 1.89779I
b = 0.11549 + 1.58311I
4.08770 + 3.98828I 3.98066 2.30410I
u = 0.517613 1.064580I
a = 0.39272 1.89779I
b = 0.11549 1.58311I
4.08770 3.98828I 3.98066 + 2.30410I
u = 0.248055 + 1.159160I
a = 0.074740 0.660291I
b = 0.260166 0.780385I
0.299485 0.584791I 8.18494 0.42463I
u = 0.248055 1.159160I
a = 0.074740 + 0.660291I
b = 0.260166 + 0.780385I
0.299485 + 0.584791I 8.18494 + 0.42463I
u = 0.721568 + 0.264552I
a = 0.277705 0.147451I
b = 0.554520 0.161487I
2.68166 3.09151I 0.88507 + 2.77317I
u = 0.721568 0.264552I
a = 0.277705 + 0.147451I
b = 0.554520 + 0.161487I
2.68166 + 3.09151I 0.88507 2.77317I
u = 0.054835 + 1.272260I
a = 0.890768 0.428266I
b = 0.434512 + 0.328358I
4.20760 + 0.97328I 2.11395 4.55184I
u = 0.054835 1.272260I
a = 0.890768 + 0.428266I
b = 0.434512 0.328358I
4.20760 0.97328I 2.11395 + 4.55184I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.189835 + 1.277090I
a = 1.52194 + 0.52826I
b = 0.417636 + 0.610136I
3.38528 + 2.06052I 0.97721 4.27827I
u = 0.189835 1.277090I
a = 1.52194 0.52826I
b = 0.417636 0.610136I
3.38528 2.06052I 0.97721 + 4.27827I
u = 0.237707 + 1.295530I
a = 0.427494 0.439480I
b = 0.554520 + 0.161487I
2.68166 + 3.09151I 0.88507 2.77317I
u = 0.237707 1.295530I
a = 0.427494 + 0.439480I
b = 0.554520 0.161487I
2.68166 3.09151I 0.88507 + 2.77317I
u = 0.264179 + 1.322520I
a = 2.28269 0.78081I
b = 0.11549 1.58311I
4.08770 3.98828I 4.00000 + 2.30410I
u = 0.264179 1.322520I
a = 2.28269 + 0.78081I
b = 0.11549 + 1.58311I
4.08770 + 3.98828I 4.00000 2.30410I
u = 0.634142 + 0.073008I
a = 1.79945 + 3.33771I
b = 0.07596 + 1.61798I
8.50059 0.69909I 9.38255 0.31146I
u = 0.634142 0.073008I
a = 1.79945 3.33771I
b = 0.07596 1.61798I
8.50059 + 0.69909I 9.38255 + 0.31146I
u = 0.295602 + 1.332060I
a = 1.22092 + 0.91446I
b = 0.480218 + 0.701439I
1.11805 6.64525I 4.64041 + 7.71274I
u = 0.295602 1.332060I
a = 1.22092 0.91446I
b = 0.480218 0.701439I
1.11805 + 6.64525I 4.64041 7.71274I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.049987 + 1.363660I
a = 0.593933 + 0.495532I
b = 0.04262 1.48330I
1.65768 2.36433I 3.03894 + 3.34702I
u = 0.049987 1.363660I
a = 0.593933 0.495532I
b = 0.04262 + 1.48330I
1.65768 + 2.36433I 3.03894 3.34702I
u = 0.337090 + 1.352820I
a = 2.06978 1.32113I
b = 0.13939 1.60559I
6.71673 + 8.95499I 7.02415 5.84784I
u = 0.337090 1.352820I
a = 2.06978 + 1.32113I
b = 0.13939 + 1.60559I
6.71673 8.95499I 7.02415 + 5.84784I
u = 0.568209 + 0.094076I
a = 0.59547 + 2.13551I
b = 0.260166 + 0.780385I
0.299485 + 0.584791I 8.18494 + 0.42463I
u = 0.568209 0.094076I
a = 0.59547 2.13551I
b = 0.260166 0.780385I
0.299485 0.584791I 8.18494 0.42463I
14
III. I
u
3
= hb a 1, a
2
+ au + 2a + u + 2, u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
1
a
5
=
u
0
a
12
=
0
1
a
2
=
a
a + 1
a
4
=
u
0
a
1
=
1
a + 1
a
7
=
u
au + 2u
a
9
=
au a u 1
au u 1
a
3
=
au + 2u
a + u 1
a
8
=
u
au + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u 1)
2
c
2
, c
3
, c
8
c
9
u
4
+ 3u
2
+ 1
c
4
u
4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(u
2
+ 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
3y + 1)
2
c
2
, c
3
, c
8
c
9
(y
2
+ 3y + 1)
2
c
4
y
4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y + 1)
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000 + 0.618034I
b = 0.618034I
2.30291 4.00000
u = 1.000000I
a = 1.00000 1.61803I
b = 1.61803I
5.59278 4.00000
u = 1.000000I
a = 1.000000 0.618034I
b = 0.618034I
2.30291 4.00000
u = 1.000000I
a = 1.00000 + 1.61803I
b = 1.61803I
5.59278 4.00000
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
2
)(u
18
5u
17
+ ··· 13u + 3)
2
· (u
23
7u
22
+ ··· + 43u 136)
c
2
, c
3
, c
8
c
9
(u
4
+ 3u
2
+ 1)(u
18
u
17
+ ··· u + 1)
2
(u
23
+ 3u
22
+ ··· + 9u + 2)
c
4
u
4
(u
18
u
17
+ ··· u + 5)
2
(u
23
+ 3u
22
+ ··· + 112u + 32)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
((u
2
+ 1)
2
)(u
23
+ 12u
21
+ ··· + 2u + 1)(u
36
u
35
+ ··· 6u + 5)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
2
)(y
18
3y
17
+ ··· + 5y + 9)
2
· (y
23
9y
22
+ ··· + 119625y 18496)
c
2
, c
3
, c
8
c
9
((y
2
+ 3y + 1)
2
)(y
18
+ 21y
17
+ ··· + y + 1)
2
· (y
23
+ 27y
22
+ ··· 19y 4)
c
4
y
4
(y
18
7y
17
+ ··· 91y + 25)
2
(y
23
7y
22
+ ··· 14592y 1024)
c
5
, c
6
, c
7
c
10
, c
11
, c
12
((y + 1)
4
)(y
23
+ 24y
22
+ ··· 8y 1)(y
36
+ 27y
35
+ ··· 116y + 25)
20