12a
1165
(K12a
1165
)
A knot diagram
1
Linearized knot diagam
4 9 8 12 1 11 10 3 2 7 6 5
Solving Sequence
1,6
5 12 4 2 11 7 10 8 3 9
c
5
c
12
c
4
c
1
c
11
c
6
c
10
c
7
c
3
c
9
c
2
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
33
+ u
32
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
33
+ u
32
+ · · · + u + 1i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
2
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
11
=
u
3
+ 2u
u
3
+ u
a
7
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
10
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
12
5u
10
+ 9u
8
4u
6
6u
4
+ 5u
2
+ 1
u
12
4u
10
+ 6u
8
2u
6
3u
4
+ 2u
2
a
3
=
u
28
+ 11u
26
+ ··· + 3u
2
+ 1
u
28
+ 10u
26
+ ··· + 9u
4
2u
2
a
9
=
u
21
8u
19
+ ··· 4u
3
+ 3u
u
23
+ 9u
21
+ ··· + 4u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
30
44u
28
+ 4u
27
+ 216u
26
40u
25
592u
24
+ 176u
23
+ 892u
22
420u
21
420u
20
+ 508u
19
948u
18
52u
17
+ 1812u
16
716u
15
808u
14
+ 840u
13
896u
12
64u
11
+ 1080u
10
520u
9
56u
8
+ 264u
7
352u
6
+ 96u
5
+ 64u
4
64u
3
+ 48u
2
16u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
10
, c
11
u
33
3u
32
+ ··· + 9u 3
c
2
, c
3
, c
8
c
9
u
33
+ u
32
+ ··· + u + 1
c
4
, c
5
, c
12
u
33
+ u
32
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
7
c
10
, c
11
y
33
+ 43y
32
+ ··· 15y 9
c
2
, c
3
, c
8
c
9
y
33
+ 35y
32
+ ··· 7y 1
c
4
, c
5
, c
12
y
33
25y
32
+ ··· 7y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.007187 + 0.927489I
13.69600 + 2.31895I 1.75304 2.85786I
u = 0.007187 0.927489I
13.69600 2.31895I 1.75304 + 2.85786I
u = 0.022659 + 0.925236I
7.06487 5.65946I 1.58265 + 2.87323I
u = 0.022659 0.925236I
7.06487 + 5.65946I 1.58265 2.87323I
u = 1.089610 + 0.294783I
5.38539 + 0.42351I 5.40857 + 0.36274I
u = 1.089610 0.294783I
5.38539 0.42351I 5.40857 0.36274I
u = 1.14314
2.30256 1.78270
u = 1.182680 + 0.290002I
0.43739 + 1.77292I 1.59025 0.21543I
u = 1.182680 0.290002I
0.43739 1.77292I 1.59025 + 0.21543I
u = 1.234350 + 0.088067I
4.21894 1.97469I 11.37360 + 5.72658I
u = 1.234350 0.088067I
4.21894 + 1.97469I 11.37360 5.72658I
u = 1.244790 + 0.290367I
0.08256 5.33404I 3.84371 + 7.86352I
u = 1.244790 0.290367I
0.08256 + 5.33404I 3.84371 7.86352I
u = 0.124967 + 0.695815I
2.55035 4.09733I 2.17456 + 4.30313I
u = 0.124967 0.695815I
2.55035 + 4.09733I 2.17456 4.30313I
u = 1.303370 + 0.091971I
11.41980 + 2.77587I 12.69893 3.54173I
u = 1.303370 0.091971I
11.41980 2.77587I 12.69893 + 3.54173I
u = 0.042773 + 0.691881I
3.85716 + 1.79630I 2.14795 4.42092I
u = 0.042773 0.691881I
3.85716 1.79630I 2.14795 + 4.42092I
u = 1.290570 + 0.282135I
6.93611 + 7.59600I 7.80083 6.53721I
u = 1.290570 0.282135I
6.93611 7.59600I 7.80083 + 6.53721I
u = 1.271570 + 0.457494I
3.19600 + 0.72997I 4.74001 + 0.15304I
u = 1.271570 0.457494I
3.19600 0.72997I 4.74001 0.15304I
u = 1.285040 + 0.453763I
9.72993 + 2.60735I 1.44806 0.13745I
u = 1.285040 0.453763I
9.72993 2.60735I 1.44806 + 0.13745I
u = 1.296000 + 0.449004I
9.64446 7.23064I 1.69264 + 5.79671I
u = 1.296000 0.449004I
9.64446 + 7.23064I 1.69264 5.79671I
u = 1.306320 + 0.442632I
2.92604 + 10.54330I 5.09643 5.66423I
u = 1.306320 0.442632I
2.92604 10.54330I 5.09643 + 5.66423I
u = 0.391381 + 0.352338I
6.35493 1.38874I 6.74266 + 4.47575I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.391381 0.352338I
6.35493 + 1.38874I 6.74266 4.47575I
u = 0.185818 + 0.264071I
0.115512 + 0.725231I 3.81673 9.57308I
u = 0.185818 0.264071I
0.115512 0.725231I 3.81673 + 9.57308I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
10
, c
11
u
33
3u
32
+ ··· + 9u 3
c
2
, c
3
, c
8
c
9
u
33
+ u
32
+ ··· + u + 1
c
4
, c
5
, c
12
u
33
+ u
32
+ ··· + u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
7
c
10
, c
11
y
33
+ 43y
32
+ ··· 15y 9
c
2
, c
3
, c
8
c
9
y
33
+ 35y
32
+ ··· 7y 1
c
4
, c
5
, c
12
y
33
25y
32
+ ··· 7y 1
8