10
112
(K10a
76
)
A knot diagram
1
Linearized knot diagam
5 6 10 7 8 9 1 2 3 4
Solving Sequence
3,9
10 4
1,7
6 2 8 5
c
9
c
3
c
10
c
6
c
2
c
8
c
5
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−11u
18
+ 43u
17
+ ··· + 3b 32, 95u
18
+ 507u
17
+ ··· + 21a 761, u
19
6u
18
+ ··· 11u 7i
I
u
2
= hu
14
+ 2u
13
+ ··· + b + 2, 2u
14
a 2u
14
+ ··· 4a 4,
u
15
+ 2u
14
6u
13
11u
12
+ 16u
11
+ 19u
10
30u
9
7u
8
+ 38u
7
12u
6
20u
5
+ 14u
4
3u
2
+ 2u + 1i
I
u
3
= h−u
4
u
3
+ 2u
2
+ b + 2u + 1, 2u
4
+ u
3
5u
2
+ a u, u
5
u
4
3u
3
+ 3u
2
+ 1i
I
u
4
= hb + 1, a
2
a 1, u + 1i
I
v
1
= ha, b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−11u
18
+ 43u
17
+ · · · + 3b 32, 95u
18
+ 507u
17
+ · · · + 21a
761, u
19
6u
18
+ · · · 11u 7i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
7
=
4.52381u
18
24.1429u
17
+ ··· + 85.8571u + 36.2381
11
3
u
18
43
3
u
17
+ ··· +
64
3
u +
32
3
a
6
=
8.19048u
18
38.4762u
17
+ ··· + 107.190u + 46.9048
11
3
u
18
43
3
u
17
+ ··· +
64
3
u +
32
3
a
2
=
8.47619u
18
+ 39.5238u
17
+ ··· 97.4762u 43.0952
25
3
u
18
116
3
u
17
+ ··· + 99u + 41
a
8
=
0.809524u
18
+ 2.85714u
17
+ ··· + 1.52381u + 0.238095
28
3
u
18
+ 43u
17
+ ···
323
3
u
143
3
a
5
=
6.19048u
18
30.1429u
17
+ ··· + 87.5238u + 39.2381
1
3
u
18
+
10
3
u
17
+ ··· 12u
17
3
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
59
3
u
18
281
3
u
17
+ 23u
16
+ 434u
15
847
3
u
14
2660
3
u
13
22u
12
+
5324
3
u
11
+ 1228u
10
6821
3
u
9
2347u
8
+ 388u
7
+
9250
3
u
6
+
2645
3
u
5
1147u
4
1166u
3
10u
2
+
733
3
u + 99
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
19
2u
18
+ ··· 12u
2
+ 1
c
2
, c
7
u
19
2u
18
+ ··· + 2u + 1
c
3
, c
9
, c
10
u
19
6u
18
+ ··· 11u 7
c
4
, c
6
u
19
+ 2u
18
+ ··· 2u + 1
c
5
u
19
+ 11u
18
+ ··· 22u 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
19
12y
18
+ ··· + 24y 1
c
2
, c
7
y
19
6y
18
+ ··· + 6y 1
c
3
, c
9
, c
10
y
19
22y
18
+ ··· + 331y 49
c
4
, c
6
y
19
2y
18
+ ··· + 18y 1
c
5
y
19
y
18
+ ··· + 316y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.650742 + 0.795961I
a = 0.354047 0.615330I
b = 0.971206 + 0.919721I
0.21692 10.80920I 2.85095 + 8.95586I
u = 0.650742 0.795961I
a = 0.354047 + 0.615330I
b = 0.971206 0.919721I
0.21692 + 10.80920I 2.85095 8.95586I
u = 0.438994 + 0.966374I
a = 0.257963 0.341691I
b = 0.542166 0.571410I
0.47646 + 5.13597I 2.04643 8.91772I
u = 0.438994 0.966374I
a = 0.257963 + 0.341691I
b = 0.542166 + 0.571410I
0.47646 5.13597I 2.04643 + 8.91772I
u = 0.500281 + 0.484136I
a = 0.276043 + 1.168470I
b = 0.989225 0.870492I
1.71464 3.32825I 3.18882 + 7.99623I
u = 0.500281 0.484136I
a = 0.276043 1.168470I
b = 0.989225 + 0.870492I
1.71464 + 3.32825I 3.18882 7.99623I
u = 1.320090 + 0.044695I
a = 0.592095 + 1.229420I
b = 0.158877 0.560433I
2.62449 0.38341I 2.28736 + 1.27302I
u = 1.320090 0.044695I
a = 0.592095 1.229420I
b = 0.158877 + 0.560433I
2.62449 + 0.38341I 2.28736 1.27302I
u = 0.612375
a = 0.930010
b = 0.220758
1.15807 8.48700
u = 1.43114
a = 0.461846
b = 1.60691
3.44527 2.15800
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.397187 + 0.334084I
a = 0.957646 + 0.804912I
b = 0.907078 + 0.217237I
1.91282 + 0.23550I 3.85755 + 0.64166I
u = 0.397187 0.334084I
a = 0.957646 0.804912I
b = 0.907078 0.217237I
1.91282 0.23550I 3.85755 0.64166I
u = 1.52853 + 0.13991I
a = 0.49931 2.07085I
b = 0.98962 + 1.48876I
5.05013 + 5.56057I 1.07165 5.51845I
u = 1.52853 0.13991I
a = 0.49931 + 2.07085I
b = 0.98962 1.48876I
5.05013 5.56057I 1.07165 + 5.51845I
u = 1.55827
a = 0.243774
b = 0.971797
8.51485 10.8570
u = 1.58255 + 0.26743I
a = 0.25739 + 1.68674I
b = 1.19555 1.28537I
7.5458 + 14.7559I 5.72071 7.88264I
u = 1.58255 0.26743I
a = 0.25739 1.68674I
b = 1.19555 + 1.28537I
7.5458 14.7559I 5.72071 + 7.88264I
u = 1.74455 + 0.26523I
a = 0.099974 0.506108I
b = 0.456945 + 0.555778I
6.78146 + 0.51735I 9.96153 9.39104I
u = 1.74455 0.26523I
a = 0.099974 + 0.506108I
b = 0.456945 0.555778I
6.78146 0.51735I 9.96153 + 9.39104I
6
II.
I
u
2
= hu
14
+2u
13
+· · ·+b+2, 2u
14
a2u
14
+· · ·−4a4, u
15
+2u
14
+· · ·+2u+1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
7
=
a
u
14
2u
13
+ ··· au 2
a
6
=
u
14
2u
13
+ ··· + a 2
u
14
2u
13
+ ··· au 2
a
2
=
u
13
u
12
+ ··· + a 3u
u
14
a u
13
a + ··· a 1
a
8
=
u
13
u
12
+ ··· + a 1
u
14
u
13
+ ··· u 2
a
5
=
u
14
a u
14
+ ··· + 2a u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
14
+ 9u
13
77u
12
34u
11
+ 218u
10
21u
9
319u
8
+ 224u
7
+
214u
6
298u
5
+ 14u
4
+ 132u
3
60u
2
5u + 23
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
30
+ 2u
28
+ ··· + 7u + 1
c
2
, c
7
u
30
4u
28
+ ··· 37u + 43
c
3
, c
9
, c
10
(u
15
+ 2u
14
+ ··· + 2u + 1)
2
c
4
, c
6
u
30
3u
29
+ ··· 42u + 7
c
5
(u
15
7u
14
+ ··· + 3u 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
30
+ 4y
29
+ ··· 19y + 1
c
2
, c
7
y
30
8y
29
+ ··· 32587y + 1849
c
3
, c
9
, c
10
(y
15
16y
14
+ ··· + 10y 1)
2
c
4
, c
6
y
30
+ 13y
29
+ ··· + 182y + 49
c
5
(y
15
3y
14
+ ··· + 37y 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.564527 + 0.799929I
a = 0.618356 + 0.354320I
b = 0.554999 0.686515I
2.03837 + 2.66927I 9.65376 4.84373I
u = 0.564527 + 0.799929I
a = 0.180396 0.172783I
b = 0.148347 + 0.802094I
2.03837 + 2.66927I 9.65376 4.84373I
u = 0.564527 0.799929I
a = 0.618356 0.354320I
b = 0.554999 + 0.686515I
2.03837 2.66927I 9.65376 + 4.84373I
u = 0.564527 0.799929I
a = 0.180396 + 0.172783I
b = 0.148347 0.802094I
2.03837 2.66927I 9.65376 + 4.84373I
u = 0.860038 + 0.294980I
a = 1.344360 0.145933I
b = 0.576437 0.370669I
0.620973 0.239040I 7.64024 + 3.49944I
u = 0.860038 + 0.294980I
a = 0.467288 + 0.091114I
b = 0.940505 0.025509I
0.620973 0.239040I 7.64024 + 3.49944I
u = 0.860038 0.294980I
a = 1.344360 + 0.145933I
b = 0.576437 + 0.370669I
0.620973 + 0.239040I 7.64024 3.49944I
u = 0.860038 0.294980I
a = 0.467288 0.091114I
b = 0.940505 + 0.025509I
0.620973 + 0.239040I 7.64024 3.49944I
u = 0.239953 + 0.580457I
a = 0.446760 0.059168I
b = 0.908941 + 1.005900I
1.25960 + 3.60373I 3.55671 7.52468I
u = 0.239953 + 0.580457I
a = 0.85432 + 1.67566I
b = 0.632582 0.043404I
1.25960 + 3.60373I 3.55671 7.52468I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.239953 0.580457I
a = 0.446760 + 0.059168I
b = 0.908941 1.005900I
1.25960 3.60373I 3.55671 + 7.52468I
u = 0.239953 0.580457I
a = 0.85432 1.67566I
b = 0.632582 + 0.043404I
1.25960 3.60373I 3.55671 + 7.52468I
u = 1.42712 + 0.14742I
a = 0.17362 1.66530I
b = 0.195570 + 0.362588I
4.10336 6.07313I 1.68774 + 6.92177I
u = 1.42712 + 0.14742I
a = 0.38365 + 2.08559I
b = 1.15734 1.68991I
4.10336 6.07313I 1.68774 + 6.92177I
u = 1.42712 0.14742I
a = 0.17362 + 1.66530I
b = 0.195570 0.362588I
4.10336 + 6.07313I 1.68774 6.92177I
u = 1.42712 0.14742I
a = 0.38365 2.08559I
b = 1.15734 + 1.68991I
4.10336 + 6.07313I 1.68774 6.92177I
u = 1.49768 + 0.04419I
a = 0.20828 1.77267I
b = 0.809632 + 1.029070I
7.81267 + 4.54595I 9.44858 4.92517I
u = 1.49768 + 0.04419I
a = 0.75346 1.96166I
b = 1.19533 + 1.83190I
7.81267 + 4.54595I 9.44858 4.92517I
u = 1.49768 0.04419I
a = 0.20828 + 1.77267I
b = 0.809632 1.029070I
7.81267 4.54595I 9.44858 + 4.92517I
u = 1.49768 0.04419I
a = 0.75346 + 1.96166I
b = 1.19533 1.83190I
7.81267 4.54595I 9.44858 + 4.92517I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.54349
a = 0.239030 + 0.599706I
b = 0.938402 0.503082I
8.47953 10.2010
u = 1.54349
a = 0.239030 0.599706I
b = 0.938402 + 0.503082I
8.47953 10.2010
u = 0.406537 + 0.119542I
a = 1.03173 + 0.97861I
b = 0.502233 1.320460I
1.41571 3.90370I 10.38515 + 7.89648I
u = 0.406537 + 0.119542I
a = 2.55257 + 2.38070I
b = 0.382424 0.882051I
1.41571 3.90370I 10.38515 + 7.89648I
u = 0.406537 0.119542I
a = 1.03173 0.97861I
b = 0.502233 + 1.320460I
1.41571 + 3.90370I 10.38515 7.89648I
u = 0.406537 0.119542I
a = 2.55257 2.38070I
b = 0.382424 + 0.882051I
1.41571 + 3.90370I 10.38515 7.89648I
u = 1.55680 + 0.27188I
a = 0.037420 1.346330I
b = 0.959638 + 0.986410I
8.99262 6.60915I 9.14063 + 5.69443I
u = 1.55680 + 0.27188I
a = 0.183014 + 1.386800I
b = 0.436143 1.307360I
8.99262 6.60915I 9.14063 + 5.69443I
u = 1.55680 0.27188I
a = 0.037420 + 1.346330I
b = 0.959638 0.986410I
8.99262 + 6.60915I 9.14063 5.69443I
u = 1.55680 0.27188I
a = 0.183014 1.386800I
b = 0.436143 + 1.307360I
8.99262 + 6.60915I 9.14063 5.69443I
12
III.
I
u
3
= h−u
4
u
3
+2u
2
+b+2u+1, 2u
4
+u
3
5u
2
+au, u
5
u
4
3u
3
+3u
2
+1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
7
=
2u
4
u
3
+ 5u
2
+ u
u
4
+ u
3
2u
2
2u 1
a
6
=
u
4
+ 3u
2
u 1
u
4
+ u
3
2u
2
2u 1
a
2
=
u
4
+ 2u
2
u + 2
u
4
3u
2
+ u
a
8
=
u
4
+ 3u
2
u
u
3
2u
a
5
=
u
4
+ 2u
2
u
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
7u
3
+ 10u
2
+ 14u + 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
5
+ u
4
+ u
2
+ u + 1
c
2
, c
7
u
5
u
4
+ u
3
+ u 1
c
3
u
5
+ u
4
3u
3
3u
2
1
c
4
, c
6
u
5
u
4
+ 3u
3
+ u + 1
c
5
u
5
+ 4u
4
+ 9u
3
+ 13u
2
+ 11u + 5
c
9
, c
10
u
5
u
4
3u
3
+ 3u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
5
y
4
3y
2
y 1
c
2
, c
7
y
5
+ y
4
+ 3y
3
+ y 1
c
3
, c
9
, c
10
y
5
7y
4
+ 15y
3
7y
2
6y 1
c
4
, c
6
y
5
+ 5y
4
+ 11y
3
+ 8y
2
+ y 1
c
5
y
5
+ 2y
4
y
3
11y
2
9y 25
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.48162 + 0.12936I
a = 0.00174 2.14399I
b = 0.54328 + 1.49449I
6.00251 + 5.77307I 7.88552 6.98438I
u = 1.48162 0.12936I
a = 0.00174 + 2.14399I
b = 0.54328 1.49449I
6.00251 5.77307I 7.88552 + 6.98438I
u = 0.099006 + 0.496292I
a = 1.44626 + 0.01961I
b = 0.210516 0.857202I
0.38751 3.74061I 1.55846 + 6.53295I
u = 0.099006 0.496292I
a = 1.44626 0.01961I
b = 0.210516 + 0.857202I
0.38751 + 3.74061I 1.55846 6.53295I
u = 1.76524
a = 0.103987
b = 0.507589
6.95916 12.1120
16
IV. I
u
4
= hb + 1, a
2
a 1, u + 1i
(i) Arc colorings
a
3
=
0
1
a
9
=
1
0
a
10
=
1
1
a
4
=
1
0
a
1
=
0
1
a
7
=
a
1
a
6
=
a 1
1
a
2
=
a + 2
a
a
8
=
a
a 1
a
5
=
a 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
2
+ u 1
c
3
, c
4
, c
6
(u 1)
2
c
5
u
2
c
9
, c
10
(u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
2
3y + 1
c
3
, c
4
, c
6
c
9
, c
10
(y 1)
2
c
5
y
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 1.00000
0 5.00000
u = 1.00000
a = 1.61803
b = 1.00000
0 5.00000
20
V. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
10
=
1
0
a
4
=
1
0
a
1
=
1
0
a
7
=
0
1
a
6
=
1
1
a
2
=
2
1
a
8
=
1
1
a
5
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
u + 1
c
3
, c
5
, c
9
c
10
u
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
y 1
c
3
, c
5
, c
9
c
10
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u + 1)(u
2
+ u 1)(u
5
+ u
4
+ ··· + u + 1)(u
19
2u
18
+ ··· 12u
2
+ 1)
· (u
30
+ 2u
28
+ ··· + 7u + 1)
c
2
, c
7
(u + 1)(u
2
+ u 1)(u
5
u
4
+ ··· + u 1)(u
19
2u
18
+ ··· + 2u + 1)
· (u
30
4u
28
+ ··· 37u + 43)
c
3
u(u 1)
2
(u
5
+ u
4
+ ··· 3u
2
1)(u
15
+ 2u
14
+ ··· + 2u + 1)
2
· (u
19
6u
18
+ ··· 11u 7)
c
4
, c
6
((u 1)
2
)(u + 1)(u
5
u
4
+ ··· + u + 1)(u
19
+ 2u
18
+ ··· 2u + 1)
· (u
30
3u
29
+ ··· 42u + 7)
c
5
u
3
(u
5
+ 4u
4
+ ··· + 11u + 5)(u
15
7u
14
+ ··· + 3u 2)
2
· (u
19
+ 11u
18
+ ··· 22u 7)
c
9
, c
10
u(u + 1)
2
(u
5
u
4
+ ··· + 3u
2
+ 1)(u
15
+ 2u
14
+ ··· + 2u + 1)
2
· (u
19
6u
18
+ ··· 11u 7)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y 1)(y
2
3y + 1)(y
5
y
4
+ ··· y 1)(y
19
12y
18
+ ··· + 24y 1)
· (y
30
+ 4y
29
+ ··· 19y + 1)
c
2
, c
7
(y 1)(y
2
3y + 1)(y
5
+ y
4
+ ··· + y 1)(y
19
6y
18
+ ··· + 6y 1)
· (y
30
8y
29
+ ··· 32587y + 1849)
c
3
, c
9
, c
10
y(y 1)
2
(y
5
7y
4
+ 15y
3
7y
2
6y 1)
· ((y
15
16y
14
+ ··· + 10y 1)
2
)(y
19
22y
18
+ ··· + 331y 49)
c
4
, c
6
((y 1)
3
)(y
5
+ 5y
4
+ ··· + y 1)(y
19
2y
18
+ ··· + 18y 1)
· (y
30
+ 13y
29
+ ··· + 182y + 49)
c
5
y
3
(y
5
+ 2y
4
+ ··· 9y 25)(y
15
3y
14
+ ··· + 37y 4)
2
· (y
19
y
18
+ ··· + 316y 49)
26