12a
1177
(K12a
1177
)
A knot diagram
1
Linearized knot diagam
4 10 8 9 11 12 3 1 2 5 7 6
Solving Sequence
2,9
10
3,5
11 6 4 1 8 7 12
c
9
c
2
c
10
c
5
c
4
c
1
c
8
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.26355 × 10
21
u
36
4.65847 × 10
21
u
35
+ ··· + 8.18871 × 10
21
b 1.58097 × 10
21
,
6.44134 × 10
21
u
36
+ 4.23042 × 10
21
u
35
+ ··· + 8.18871 × 10
21
a + 1.81600 × 10
21
, u
37
+ u
36
+ ··· + 2u
2
+ 1i
I
u
2
= h−1.64908 × 10
149
u
59
+ 3.34873 × 10
149
u
58
+ ··· + 7.81855 × 10
149
b 4.35814 × 10
151
,
6.45563 × 10
151
u
59
+ 1.26626 × 10
152
u
58
+ ··· + 2.11883 × 10
152
a 1.81648 × 10
154
,
u
60
u
59
+ ··· 152u + 271i
I
u
3
= h−u
20
+ u
19
+ ··· + b 1, u
19
+ u
18
+ ··· + a 1, u
21
u
20
+ ··· + u 1i
I
u
4
= h932291063u
17
+ 893351307u
16
+ ··· + 714572543b + 14866160218,
18572309288u
17
+ 15580732761u
16
+ ··· + 7860297973a + 300923661828,
u
18
6u
16
+ ··· + 26u 11i
* 4 irreducible components of dim
C
= 0, with total 136 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.26×10
21
u
36
4.66×10
21
u
35
+· · ·+8.19×10
21
b1.58×10
21
, 6.44×
10
21
u
36
+4.23×10
21
u
35
+· · ·+8.19×10
21
a+1.82×10
21
, u
37
+u
36
+· · ·+2u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
0.786612u
36
0.516616u
35
+ ··· + 0.307274u 0.221769
0.520662u
36
+ 0.568889u
35
+ ··· 0.0878633u + 0.193067
a
11
=
0.169413u
36
0.278568u
35
+ ··· + 0.100583u + 1.08723
0.193067u
36
+ 0.327595u
35
+ ··· 0.742279u 1.08786
a
6
=
0.771491u
36
+ 0.281145u
35
+ ··· + 0.204847u 1.00896
0.582458u
36
0.514755u
35
+ ··· + 0.796684u + 0.548671
a
4
=
1.30727u
36
1.08551u
35
+ ··· + 0.395137u 0.414836
0.520662u
36
+ 0.568889u
35
+ ··· 0.0878633u + 0.193067
a
1
=
0.607890u
36
0.486704u
35
+ ··· + 0.388479u 0.0924838
0.520662u
36
+ 0.568889u
35
+ ··· 0.0878633u + 0.193067
a
8
=
0.414836u
36
+ 0.892438u
35
+ ··· 0.327443u 1.39514
0.193067u
36
0.327595u
35
+ ··· + 0.742279u + 1.08786
a
7
=
0.414836u
36
+ 0.892438u
35
+ ··· 0.327443u 1.39514
0.193067u
36
0.327595u
35
+ ··· + 0.742279u + 1.08786
a
12
=
0.456823u
36
+ 0.679879u
35
+ ··· 0.501075u 1.20565
0.449008u
36
0.538538u
35
+ ··· 1.03063u + 0.204677
(ii) Obstruction class = 1
(iii) Cusp Shapes =
14266512891898453968337
8188710458299948771387
u
36
+
42200187178412249372194
8188710458299948771387
u
35
+ ··· +
4891160629825285242867
8188710458299948771387
u
36295754117365129264878
8188710458299948771387
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
37
30u
36
+ ··· + 159744u 8192
c
2
, c
3
, c
7
c
9
u
37
u
36
+ ··· 2u
2
1
c
4
, c
8
u
37
6u
35
+ ··· u + 1
c
5
, c
10
u
37
7u
36
+ ··· 3368u + 464
c
6
, c
11
, c
12
u
37
+ 7u
36
+ ··· + 24u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
6y
36
+ ··· 16777216y 67108864
c
2
, c
3
, c
7
c
9
y
37
23y
36
+ ··· 4y 1
c
4
, c
8
y
37
12y
36
+ ··· + 25y 1
c
5
, c
10
y
37
21y
36
+ ··· 1481536y 215296
c
6
, c
11
, c
12
y
37
+ 31y
36
+ ··· + 96y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.786239 + 0.506891I
a = 0.05205 1.43237I
b = 0.564891 0.231667I
0.47617 1.67526I 3.31637 + 3.88563I
u = 0.786239 0.506891I
a = 0.05205 + 1.43237I
b = 0.564891 + 0.231667I
0.47617 + 1.67526I 3.31637 3.88563I
u = 0.938042 + 0.514832I
a = 0.11839 1.74298I
b = 0.527751 0.388617I
1.95031 + 5.87839I 4.68305 8.83918I
u = 0.938042 0.514832I
a = 0.11839 + 1.74298I
b = 0.527751 + 0.388617I
1.95031 5.87839I 4.68305 + 8.83918I
u = 0.871027 + 0.217583I
a = 1.13089 2.14076I
b = 0.275665 0.186662I
7.65556 + 1.16201I 9.69224 3.73584I
u = 0.871027 0.217583I
a = 1.13089 + 2.14076I
b = 0.275665 + 0.186662I
7.65556 1.16201I 9.69224 + 3.73584I
u = 0.197332 + 0.860026I
a = 0.493764 0.476709I
b = 1.077980 + 0.353331I
2.88989 + 2.19276I 5.78492 1.61701I
u = 0.197332 0.860026I
a = 0.493764 + 0.476709I
b = 1.077980 0.353331I
2.88989 2.19276I 5.78492 + 1.61701I
u = 0.867464 + 0.083394I
a = 0.529466 + 0.182358I
b = 1.342910 + 0.189263I
0.61724 4.98585I 5.04944 + 5.32957I
u = 0.867464 0.083394I
a = 0.529466 0.182358I
b = 1.342910 0.189263I
0.61724 + 4.98585I 5.04944 5.32957I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.014480 + 0.500016I
a = 0.20956 1.88598I
b = 0.486016 0.467133I
3.05947 10.02590I 0.75769 + 10.58122I
u = 1.014480 0.500016I
a = 0.20956 + 1.88598I
b = 0.486016 + 0.467133I
3.05947 + 10.02590I 0.75769 10.58122I
u = 0.112842 + 0.850155I
a = 0.486442 0.375861I
b = 1.104810 + 0.459227I
6.59902 + 2.08871I 9.63522 2.30278I
u = 0.112842 0.850155I
a = 0.486442 + 0.375861I
b = 1.104810 0.459227I
6.59902 2.08871I 9.63522 + 2.30278I
u = 0.854222
a = 0.533319
b = 1.36822
4.57429 2.43030
u = 0.040212 + 0.829668I
a = 0.467034 0.291029I
b = 1.123270 + 0.557085I
2.48071 6.37865I 5.52659 + 5.53285I
u = 0.040212 0.829668I
a = 0.467034 + 0.291029I
b = 1.123270 0.557085I
2.48071 + 6.37865I 5.52659 5.53285I
u = 1.188220 + 0.324567I
a = 0.393074 + 1.111990I
b = 0.985784 + 0.826481I
4.69685 4.30202I 1.33639 + 3.29100I
u = 1.188220 0.324567I
a = 0.393074 1.111990I
b = 0.985784 0.826481I
4.69685 + 4.30202I 1.33639 3.29100I
u = 1.230060 + 0.209006I
a = 0.642023 + 1.250600I
b = 0.802751 + 0.762812I
10.76160 + 1.15123I 6.36296 3.58931I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.230060 0.209006I
a = 0.642023 1.250600I
b = 0.802751 0.762812I
10.76160 1.15123I 6.36296 + 3.58931I
u = 0.631734 + 0.394223I
a = 0.346242 1.053410I
b = 0.495352 0.068506I
0.69024 1.62727I 2.64679 + 4.87601I
u = 0.631734 0.394223I
a = 0.346242 + 1.053410I
b = 0.495352 + 0.068506I
0.69024 + 1.62727I 2.64679 4.87601I
u = 1.252060 + 0.433441I
a = 0.181287 + 1.213950I
b = 1.04062 + 0.98120I
5.43992 + 8.56805I 2.09898 8.35054I
u = 1.252060 0.433441I
a = 0.181287 1.213950I
b = 1.04062 0.98120I
5.43992 8.56805I 2.09898 + 8.35054I
u = 1.30438 + 0.61058I
a = 0.097835 + 1.270040I
b = 1.16668 + 1.13599I
3.73598 + 9.12102I 0. 4.65522I
u = 1.30438 0.61058I
a = 0.097835 1.270040I
b = 1.16668 1.13599I
3.73598 9.12102I 0. + 4.65522I
u = 1.38464 + 0.43559I
a = 0.14229 + 1.42555I
b = 0.95760 + 1.11622I
12.1564 10.3966I 6.47193 + 7.01607I
u = 1.38464 0.43559I
a = 0.14229 1.42555I
b = 0.95760 1.11622I
12.1564 + 10.3966I 6.47193 7.01607I
u = 0.221706 + 0.476004I
a = 0.033162 0.434804I
b = 0.513564 + 0.368891I
0.879441 0.628295I 7.91035 + 3.37637I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.221706 0.476004I
a = 0.033162 + 0.434804I
b = 0.513564 0.368891I
0.879441 + 0.628295I 7.91035 3.37637I
u = 0.038612 + 0.501156I
a = 0.096662 0.249135I
b = 0.472964 + 0.818630I
3.56193 + 2.44936I 0.40204 2.98462I
u = 0.038612 0.501156I
a = 0.096662 + 0.249135I
b = 0.472964 0.818630I
3.56193 2.44936I 0.40204 + 2.98462I
u = 1.36064 + 0.64031I
a = 0.146569 + 1.344680I
b = 1.16515 + 1.19888I
0.89573 13.68010I 0
u = 1.36064 0.64031I
a = 0.146569 1.344680I
b = 1.16515 1.19888I
0.89573 + 13.68010I 0
u = 1.40294 + 0.64611I
a = 0.160954 + 1.401230I
b = 1.15149 + 1.23900I
5.6972 + 18.0402I 0
u = 1.40294 0.64611I
a = 0.160954 1.401230I
b = 1.15149 1.23900I
5.6972 18.0402I 0
8
II. I
u
2
= h−1.65 × 10
149
u
59
+ 3.35 × 10
149
u
58
+ · · · + 7.82 × 10
149
b 4.36 ×
10
151
, 6.46 × 10
151
u
59
+ 1.27 × 10
152
u
58
+ · · · + 2.12 × 10
152
a 1.82 ×
10
154
, u
60
u
59
+ · · · 152u + 271i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
0.304679u
59
0.597623u
58
+ ··· 120.013u + 85.7306
0.210919u
59
0.428306u
58
+ ··· 86.8024u + 55.7410
a
11
=
0.212530u
59
0.398757u
58
+ ··· 104.727u + 66.5187
0.0861476u
59
0.151846u
58
+ ··· 50.7134u + 30.3048
a
6
=
0.147270u
59
+ 0.330434u
58
+ ··· + 62.1929u 34.5388
0.0408018u
59
0.0659039u
58
+ ··· 29.5324u + 14.4631
a
4
=
0.0937608u
59
0.169317u
58
+ ··· 33.2105u + 29.9895
0.210919u
59
0.428306u
58
+ ··· 86.8024u + 55.7410
a
1
=
0.147726u
59
+ 0.290344u
58
+ ··· + 55.4703u 45.1729
0.0744110u
59
+ 0.136591u
58
+ ··· + 37.9043u 21.2506
a
8
=
0.0422375u
59
+ 0.0735826u
58
+ ··· + 19.0597u 15.5910
0.0920046u
59
+ 0.187343u
58
+ ··· + 39.5968u 24.1190
a
7
=
0.159880u
59
+ 0.312300u
58
+ ··· + 65.4094u 45.4178
0.103369u
59
+ 0.209046u
58
+ ··· + 43.5317u 27.1035
a
12
=
0.0182647u
59
+ 0.0433689u
58
+ ··· 2.37838u + 1.23113
0.0692578u
59
+ 0.143295u
58
+ ··· + 23.4970u 14.3756
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.227141u
59
0.403413u
58
+ ··· 118.008u + 71.1453
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
20
c
2
, c
3
, c
7
c
9
u
60
+ u
59
+ ··· + 152u + 271
c
4
, c
8
u
60
+ 3u
59
+ ··· 36u + 19
c
5
, c
10
(u
10
2u
9
u
8
+ 5u
7
3u
6
4u
5
+ 12u
4
13u
3
+ 5u
2
u + 2)
6
c
6
, c
11
, c
12
(u
10
u
9
+ 5u
8
5u
7
+ 9u
6
9u
5
+ 6u
4
6u
3
+ u
2
+ 1)
6
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)
20
c
2
, c
3
, c
7
c
9
y
60
45y
59
+ ··· + 1471732y + 73441
c
4
, c
8
y
60
+ 15y
59
+ ··· + 18996y + 361
c
5
, c
10
(y
10
6y
9
+ ··· + 19y + 4)
6
c
6
, c
11
, c
12
(y
10
+ 9y
9
+ 33y
8
+ 59y
7
+ 41y
6
21y
5
44y
4
6y
3
+ 13y
2
+ 2y + 1)
6
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.949017 + 0.391733I
a = 0.483459 1.011210I
b = 0.583332 0.666684I
1.46262 1.59643I 0. 2.46963I
u = 0.949017 0.391733I
a = 0.483459 + 1.011210I
b = 0.583332 + 0.666684I
1.46262 + 1.59643I 0. + 2.46963I
u = 1.020530 + 0.161032I
a = 0.45536 1.74866I
b = 1.17709 1.63477I
1.17160 4.14585I 2.03817 + 3.97600I
u = 1.020530 0.161032I
a = 0.45536 + 1.74866I
b = 1.17709 + 1.63477I
1.17160 + 4.14585I 2.03817 3.97600I
u = 0.956646 + 0.064272I
a = 0.52931 + 2.36356I
b = 0.33169 + 1.52710I
4.32428 + 0.65027I 3.68528 + 0.18430I
u = 0.956646 0.064272I
a = 0.52931 2.36356I
b = 0.33169 1.52710I
4.32428 0.65027I 3.68528 0.18430I
u = 1.027300 + 0.318565I
a = 0.85428 + 1.15311I
b = 0.280199 + 0.250015I
2.96598 + 1.31773I 0
u = 1.027300 0.318565I
a = 0.85428 1.15311I
b = 0.280199 0.250015I
2.96598 1.31773I 0
u = 1.057720 + 0.214913I
a = 0.61197 1.80291I
b = 1.29735 1.66365I
5.66711 + 8.28632I 6.84391 6.14881I
u = 1.057720 0.214913I
a = 0.61197 + 1.80291I
b = 1.29735 + 1.66365I
5.66711 8.28632I 6.84391 + 6.14881I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.591936 + 0.655690I
a = 0.204582 + 0.281777I
b = 1.086930 + 0.109518I
2.96598 1.31773I 4.49110 + 0.99655I
u = 0.591936 0.655690I
a = 0.204582 0.281777I
b = 1.086930 0.109518I
2.96598 + 1.31773I 4.49110 0.99655I
u = 1.065430 + 0.366634I
a = 0.09675 1.46464I
b = 0.854715 1.092930I
1.46262 + 4.05981I 0. 8.42852I
u = 1.065430 0.366634I
a = 0.09675 + 1.46464I
b = 0.854715 + 1.092930I
1.46262 4.05981I 0. + 8.42852I
u = 0.095981 + 0.859804I
a = 0.469554 + 0.223461I
b = 0.498617 0.688972I
1.46262 4.05981I 0.41153 + 8.42852I
u = 0.095981 0.859804I
a = 0.469554 0.223461I
b = 0.498617 + 0.688972I
1.46262 + 4.05981I 0.41153 8.42852I
u = 0.496944 + 0.690303I
a = 0.211127 + 0.592953I
b = 1.102290 + 0.267379I
1.52952 + 5.45819I 0.31464 3.16937I
u = 0.496944 0.690303I
a = 0.211127 0.592953I
b = 1.102290 0.267379I
1.52952 5.45819I 0.31464 + 3.16937I
u = 1.136570 + 0.255121I
a = 0.86601 + 1.15426I
b = 0.271085 + 0.365359I
1.52952 5.45819I 0
u = 1.136570 0.255121I
a = 0.86601 1.15426I
b = 0.271085 0.365359I
1.52952 + 5.45819I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.129850 + 0.298665I
a = 0.695035 1.125510I
b = 0.193732 0.701189I
6.84786 + 0.51807I 0
u = 1.129850 0.298665I
a = 0.695035 + 1.125510I
b = 0.193732 + 0.701189I
6.84786 0.51807I 0
u = 0.306666 + 1.169970I
a = 0.137559 0.288978I
b = 0.642106 0.834586I
6.84786 + 5.13818I 0
u = 0.306666 1.169970I
a = 0.137559 + 0.288978I
b = 0.642106 + 0.834586I
6.84786 5.13818I 0
u = 1.189300 + 0.239410I
a = 0.04818 1.88316I
b = 0.87839 1.42398I
6.84786 5.13818I 0
u = 1.189300 0.239410I
a = 0.04818 + 1.88316I
b = 0.87839 + 1.42398I
6.84786 + 5.13818I 0
u = 1.253810 + 0.064221I
a = 0.443202 + 0.969300I
b = 1.04370 + 1.00006I
5.60020 1.23169I 0
u = 1.253810 0.064221I
a = 0.443202 0.969300I
b = 1.04370 1.00006I
5.60020 + 1.23169I 0
u = 0.848510 + 0.976049I
a = 0.407894 0.894438I
b = 0.471875 1.028600I
4.32428 + 0.65027I 0
u = 0.848510 0.976049I
a = 0.407894 + 0.894438I
b = 0.471875 + 1.028600I
4.32428 0.65027I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.303470 + 0.112078I
a = 0.94280 1.13531I
b = 1.51768 1.08588I
10.98540 2.31006I 0
u = 1.303470 0.112078I
a = 0.94280 + 1.13531I
b = 1.51768 + 1.08588I
10.98540 + 2.31006I 0
u = 0.655621 + 0.216382I
a = 0.90509 + 2.79934I
b = 0.036354 + 1.376510I
4.32428 6.30651I 3.68528 + 5.77459I
u = 0.655621 0.216382I
a = 0.90509 2.79934I
b = 0.036354 1.376510I
4.32428 + 6.30651I 3.68528 5.77459I
u = 1.091390 + 0.734445I
a = 0.531703 1.115870I
b = 0.337789 1.018500I
4.32428 6.30651I 0
u = 1.091390 0.734445I
a = 0.531703 + 1.115870I
b = 0.337789 + 1.018500I
4.32428 + 6.30651I 0
u = 0.148294 + 1.315270I
a = 0.313494 + 0.114021I
b = 0.798431 0.607771I
2.96598 + 6.97397I 0
u = 0.148294 1.315270I
a = 0.313494 0.114021I
b = 0.798431 + 0.607771I
2.96598 6.97397I 0
u = 1.277550 + 0.477103I
a = 0.50774 1.54041I
b = 1.30157 1.25383I
2.96598 6.97397I 0
u = 1.277550 0.477103I
a = 0.50774 + 1.54041I
b = 1.30157 + 1.25383I
2.96598 + 6.97397I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.090952 + 1.384330I
a = 0.333310 + 0.011702I
b = 0.827600 0.654612I
1.52952 11.11440I 0
u = 0.090952 1.384330I
a = 0.333310 0.011702I
b = 0.827600 + 0.654612I
1.52952 + 11.11440I 0
u = 1.317010 + 0.448694I
a = 0.53512 1.64564I
b = 1.30472 1.34226I
1.52952 + 11.11440I 0
u = 1.317010 0.448694I
a = 0.53512 + 1.64564I
b = 1.30472 + 1.34226I
1.52952 11.11440I 0
u = 1.39543 + 0.38171I
a = 0.037365 + 0.681468I
b = 0.465941 + 0.819143I
5.60020 1.23169I 0
u = 1.39543 0.38171I
a = 0.037365 0.681468I
b = 0.465941 0.819143I
5.60020 + 1.23169I 0
u = 1.49038 + 0.04106I
a = 1.352130 0.312952I
b = 1.85824 0.29901I
8.46186 3.47839I 0
u = 1.49038 0.04106I
a = 1.352130 + 0.312952I
b = 1.85824 + 0.29901I
8.46186 + 3.47839I 0
u = 1.27671 + 0.82477I
a = 0.285197 + 0.803525I
b = 0.131972 + 1.073020I
1.17160 + 4.14585I 0
u = 1.27671 0.82477I
a = 0.285197 0.803525I
b = 0.131972 1.073020I
1.17160 4.14585I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.35652 + 0.87787I
a = 0.313842 + 0.787115I
b = 0.078377 + 1.040940I
5.66711 8.28632I 0
u = 1.35652 0.87787I
a = 0.313842 0.787115I
b = 0.078377 1.040940I
5.66711 + 8.28632I 0
u = 0.004417 + 0.300026I
a = 2.08759 + 3.65698I
b = 0.437568 + 0.769612I
6.84786 + 0.51807I 5.35393 + 0.54188I
u = 0.004417 0.300026I
a = 2.08759 3.65698I
b = 0.437568 0.769612I
6.84786 0.51807I 5.35393 0.54188I
u = 1.63680 + 0.55171I
a = 0.256327 + 0.568035I
b = 0.157812 + 0.707626I
10.98540 + 2.31006I 0
u = 1.63680 0.55171I
a = 0.256327 0.568035I
b = 0.157812 0.707626I
10.98540 2.31006I 0
u = 0.127336 + 0.235183I
a = 0.82768 + 3.66897I
b = 0.059409 0.542206I
1.46262 + 1.59643I 0.41153 + 2.46963I
u = 0.127336 0.235183I
a = 0.82768 3.66897I
b = 0.059409 + 0.542206I
1.46262 1.59643I 0.41153 2.46963I
u = 1.92440 + 0.15962I
a = 0.301949 + 0.152335I
b = 0.087637 + 0.184649I
8.46186 + 3.47839I 0
u = 1.92440 0.15962I
a = 0.301949 0.152335I
b = 0.087637 0.184649I
8.46186 3.47839I 0
17
III.
I
u
3
= h−u
20
+ u
19
+ · · · + b 1, u
19
+ u
18
+ · · · + a 1, u
21
u
20
+ · · · + u 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
u
19
u
18
+ ··· 3u + 1
u
20
u
19
+ ··· + 8u + 1
a
11
=
5u
20
+ 5u
19
+ ··· 6u + 3
u
20
+ 11u
18
+ ··· u 8
a
6
=
2u
20
10u
19
+ ··· + 33u 10
6u
20
+ 5u
19
+ ··· 16u 7
a
4
=
u
20
+ 2u
19
+ ··· + 43u
3
11u
u
20
u
19
+ ··· + 8u + 1
a
1
=
u
20
6u
19
+ ··· + 17u 5
u
20
+ u
19
+ ··· 8u 1
a
8
=
u
19
+ 2u
18
+ ··· + 43u
2
10
u
20
11u
18
+ ··· + u + 8
a
7
=
u
19
+ 2u
18
+ ··· + 42u
2
10
u
20
11u
18
+ ··· + u + 8
a
12
=
36u
20
+ 17u
19
+ ··· 41u 61
13u
20
5u
19
+ ··· + 14u + 20
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 40u
20
+34u
19
+381u
18
319u
17
1499u
16
+1270u
15
+3294u
14
2889u
13
4717u
12
+
4263u
11
+4746u
10
4354u
9
3290u
8
+3085u
7
+1604u
6
1431u
5
500u
4
+414u
3
+95u
2
57u
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
9u
20
+ ··· + 6u
2
1
c
2
, c
7
u
21
+ u
20
+ ··· + u + 1
c
3
, c
9
u
21
u
20
+ ··· + u 1
c
4
, c
8
u
21
+ u
19
+ ··· + 2u
2
+ 1
c
5
u
21
6u
19
+ ··· + 2u 1
c
6
u
21
+ 10u
19
+ ··· + 3u
2
1
c
10
u
21
6u
19
+ ··· + 2u + 1
c
11
, c
12
u
21
+ 10u
19
+ ··· 3u
2
+ 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
5y
20
+ ··· + 12y 1
c
2
, c
3
, c
7
c
9
y
21
21y
20
+ ··· + 19y 1
c
4
, c
8
y
21
+ 2y
20
+ ··· 4y 1
c
5
, c
10
y
21
12y
20
+ ··· + 2y 1
c
6
, c
11
, c
12
y
21
+ 20y
20
+ ··· + 6y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.856036 + 0.576602I
a = 0.81416 1.46919I
b = 0.052448 1.117880I
0.54548 + 4.58464I 3.48780 6.53727I
u = 0.856036 0.576602I
a = 0.81416 + 1.46919I
b = 0.052448 + 1.117880I
0.54548 4.58464I 3.48780 + 6.53727I
u = 0.751882 + 0.581250I
a = 0.80538 1.39418I
b = 0.080602 1.224810I
2.76943 0.75968I 0.74636 + 3.01079I
u = 0.751882 0.581250I
a = 0.80538 + 1.39418I
b = 0.080602 + 1.224810I
2.76943 + 0.75968I 0.74636 3.01079I
u = 0.891534 + 0.236502I
a = 1.43236 2.01578I
b = 0.156384 0.514490I
7.97861 + 1.20750I 15.3765 6.3394I
u = 0.891534 0.236502I
a = 1.43236 + 2.01578I
b = 0.156384 + 0.514490I
7.97861 1.20750I 15.3765 + 6.3394I
u = 0.939172 + 0.585801I
a = 0.79058 1.50161I
b = 0.172630 1.063930I
3.98074 8.53235I 1.71885 + 7.62072I
u = 0.939172 0.585801I
a = 0.79058 + 1.50161I
b = 0.172630 + 1.063930I
3.98074 + 8.53235I 1.71885 7.62072I
u = 0.749002 + 0.339937I
a = 1.17638 1.34538I
b = 0.358070 0.842385I
2.05316 2.41016I 6.17082 + 3.86618I
u = 0.749002 0.339937I
a = 1.17638 + 1.34538I
b = 0.358070 + 0.842385I
2.05316 + 2.41016I 6.17082 3.86618I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.602435 + 0.391145I
a = 0.94702 1.09177I
b = 0.565251 1.149290I
4.68125 + 3.54794I 4.14026 4.31569I
u = 0.602435 0.391145I
a = 0.94702 + 1.09177I
b = 0.565251 + 1.149290I
4.68125 3.54794I 4.14026 + 4.31569I
u = 0.570751 + 0.057815I
a = 1.39693 0.22361I
b = 1.163530 0.233492I
1.24666 4.78275I 6.90631 + 2.29841I
u = 0.570751 0.057815I
a = 1.39693 + 0.22361I
b = 1.163530 + 0.233492I
1.24666 + 4.78275I 6.90631 2.29841I
u = 0.570103
a = 1.41472
b = 1.18397
5.19724 11.3100
u = 1.45983 + 0.15027I
a = 0.274885 0.483709I
b = 0.782001 0.220049I
9.98663 + 1.50889I 5.72964 + 1.39769I
u = 1.45983 0.15027I
a = 0.274885 + 0.483709I
b = 0.782001 + 0.220049I
9.98663 1.50889I 5.72964 1.39769I
u = 1.46834
a = 0.198185
b = 0.787304
5.75131 8.43610
u = 1.68158
a = 0.761529
b = 1.08690
3.69725 8.76420
u = 1.69070 + 0.06877I
a = 0.788190 0.144884I
b = 1.100200 0.092788I
7.69508 + 3.60581I 2.67681 4.75349I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.69070 0.06877I
a = 0.788190 + 0.144884I
b = 1.100200 + 0.092788I
7.69508 3.60581I 2.67681 + 4.75349I
23
IV. I
u
4
=
h9.32×10
8
u
17
+8.93×10
8
u
16
+· · · +7.15×10
8
b+1.49×10
10
, 1.86×10
10
u
17
+
1.56 × 10
10
u
16
+ · · · + 7.86 × 10
9
a + 3.01 × 10
11
, u
18
6u
16
+ · · · + 26u 11i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
u
3
+ u
a
5
=
2.36280u
17
1.98221u
16
+ ··· + 42.9118u 38.2840
1.30468u
17
1.25019u
16
+ ··· + 25.5466u 20.8043
a
11
=
2.36280u
17
+ 1.98221u
16
+ ··· 42.9118u + 39.2840
1.30468u
17
+ 1.25019u
16
+ ··· 25.5466u + 20.8043
a
6
=
1
u
2
a
4
=
1.05812u
17
0.732017u
16
+ ··· + 17.3652u 17.4797
1.30468u
17
1.25019u
16
+ ··· + 25.5466u 20.8043
a
1
=
1.81634u
17
+ 1.25032u
16
+ ··· 28.5715u + 26.6515
1.00788u
17
+ 0.743283u
16
+ ··· 9.73596u + 10.2904
a
8
=
1.14912u
17
0.777687u
16
+ ··· + 14.0881u 13.7093
1.18839u
17
0.728436u
16
+ ··· + 18.1216u 17.8950
a
7
=
2.04103u
17
1.28781u
16
+ ··· + 25.9391u 26.4832
0.673919u
17
0.325398u
16
+ ··· + 9.72281u 10.7326
a
12
=
1.64365u
17
+ 1.02927u
16
+ ··· 31.3642u + 30.1147
0.504440u
17
+ 0.425894u
16
+ ··· 5.88815u + 7.85877
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2092315776
714572543
u
17
+
1290870304
714572543
u
16
+ ···
28672326560
714572543
u +
31839285294
714572543
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
6
c
2
, c
3
, c
7
c
9
u
18
6u
16
+ ··· 26u 11
c
4
, c
8
u
18
+ 2u
16
+ ··· 2u 1
c
5
, c
10
(u + 1)
18
c
6
, c
11
, c
12
(u
3
+ u + 1)
6
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)
6
c
2
, c
3
, c
7
c
9
y
18
12y
17
+ ··· 940y + 121
c
4
, c
8
y
18
+ 4y
17
+ ··· 52y + 1
c
5
, c
10
(y 1)
18
c
6
, c
11
, c
12
(y
3
+ 2y
2
+ y 1)
6
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.975781 + 0.068356I
a = 0.23815 1.63160I
b = 1.00799 1.57767I
4.40332 5.01951 + 0.I
u = 0.975781 0.068356I
a = 0.23815 + 1.63160I
b = 1.00799 + 1.57767I
4.40332 5.01951 + 0.I
u = 0.866397 + 0.427657I
a = 0.79133 + 1.17259I
b = 0.318215 + 0.079336I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.866397 0.427657I
a = 0.79133 1.17259I
b = 0.318215 0.079336I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.725279 + 0.623782I
a = 0.116607 0.113262I
b = 1.086520 0.121018I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.725279 0.623782I
a = 0.116607 + 0.113262I
b = 1.086520 + 0.121018I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.788257 + 0.081685I
a = 0.82880 + 2.44549I
b = 0.175633 + 1.396450I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.788257 0.081685I
a = 0.82880 2.44549I
b = 0.175633 1.396450I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.227039 + 1.207920I
a = 0.284944 + 0.273008I
b = 0.748674 0.540556I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.227039 1.207920I
a = 0.284944 0.273008I
b = 0.748674 + 0.540556I
0.26574 + 2.82812I 1.50976 2.97945I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.935012 + 0.810213I
a = 0.524225 1.003350I
b = 0.406015 1.012790I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.935012 0.810213I
a = 0.524225 + 1.003350I
b = 0.406015 + 1.012790I
0.26574 2.82812I 1.50976 + 2.97945I
u = 1.217880 + 0.512150I
a = 0.45585 1.38682I
b = 1.28659 1.12457I
0.26574 + 2.82812I 1.50976 2.97945I
u = 1.217880 0.512150I
a = 0.45585 + 1.38682I
b = 1.28659 + 1.12457I
0.26574 2.82812I 1.50976 + 2.97945I
u = 1.170190 + 0.730249I
a = 0.249409 + 0.832856I
b = 0.214875 + 1.122590I
4.40332 5.01951 + 0.I
u = 1.170190 0.730249I
a = 0.249409 0.832856I
b = 0.214875 1.122590I
4.40332 5.01951 + 0.I
u = 1.48728
a = 1.24385
b = 1.75141
4.40332 5.01950
u = 1.87610
a = 0.237180
b = 0.165185
4.40332 5.01950
28
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
+ u
2
1)
26
)(u
21
9u
20
+ ··· + 6u
2
1)
· (u
37
30u
36
+ ··· + 159744u 8192)
c
2
, c
7
(u
18
6u
16
+ ··· 26u 11)(u
21
+ u
20
+ ··· + u + 1)
· (u
37
u
36
+ ··· 2u
2
1)(u
60
+ u
59
+ ··· + 152u + 271)
c
3
, c
9
(u
18
6u
16
+ ··· 26u 11)(u
21
u
20
+ ··· + u 1)
· (u
37
u
36
+ ··· 2u
2
1)(u
60
+ u
59
+ ··· + 152u + 271)
c
4
, c
8
(u
18
+ 2u
16
+ ··· 2u 1)(u
21
+ u
19
+ ··· + 2u
2
+ 1)
· (u
37
6u
35
+ ··· u + 1)(u
60
+ 3u
59
+ ··· 36u + 19)
c
5
(u + 1)
18
· (u
10
2u
9
u
8
+ 5u
7
3u
6
4u
5
+ 12u
4
13u
3
+ 5u
2
u + 2)
6
· (u
21
6u
19
+ ··· + 2u 1)(u
37
7u
36
+ ··· 3368u + 464)
c
6
(u
3
+ u + 1)
6
(u
10
u
9
+ 5u
8
5u
7
+ 9u
6
9u
5
+ 6u
4
6u
3
+ u
2
+ 1)
6
· (u
21
+ 10u
19
+ ··· + 3u
2
1)(u
37
+ 7u
36
+ ··· + 24u + 8)
c
10
(u + 1)
18
· (u
10
2u
9
u
8
+ 5u
7
3u
6
4u
5
+ 12u
4
13u
3
+ 5u
2
u + 2)
6
· (u
21
6u
19
+ ··· + 2u + 1)(u
37
7u
36
+ ··· 3368u + 464)
c
11
, c
12
(u
3
+ u + 1)
6
(u
10
u
9
+ 5u
8
5u
7
+ 9u
6
9u
5
+ 6u
4
6u
3
+ u
2
+ 1)
6
· (u
21
+ 10u
19
+ ··· 3u
2
+ 1)(u
37
+ 7u
36
+ ··· + 24u + 8)
29
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
y
2
+ 2y 1)
26
)(y
21
5y
20
+ ··· + 12y 1)
· (y
37
6y
36
+ ··· 16777216y 67108864)
c
2
, c
3
, c
7
c
9
(y
18
12y
17
+ ··· 940y + 121)(y
21
21y
20
+ ··· + 19y 1)
· (y
37
23y
36
+ ··· 4y 1)(y
60
45y
59
+ ··· + 1471732y + 73441)
c
4
, c
8
(y
18
+ 4y
17
+ ··· 52y + 1)(y
21
+ 2y
20
+ ··· 4y 1)
· (y
37
12y
36
+ ··· + 25y 1)(y
60
+ 15y
59
+ ··· + 18996y + 361)
c
5
, c
10
((y 1)
18
)(y
10
6y
9
+ ··· + 19y + 4)
6
(y
21
12y
20
+ ··· + 2y 1)
· (y
37
21y
36
+ ··· 1481536y 215296)
c
6
, c
11
, c
12
(y
3
+ 2y
2
+ y 1)
6
· (y
10
+ 9y
9
+ 33y
8
+ 59y
7
+ 41y
6
21y
5
44y
4
6y
3
+ 13y
2
+ 2y + 1)
6
· (y
21
+ 20y
20
+ ··· + 6y 1)(y
37
+ 31y
36
+ ··· + 96y 64)
30