12a
1178
(K12a
1178
)
A knot diagram
1
Linearized knot diagam
4 10 8 9 11 12 3 1 2 7 6 5
Solving Sequence
5,11
6 12 7
1,9
4 2 8 3 10
c
5
c
11
c
6
c
12
c
4
c
1
c
8
c
3
c
10
c
2
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h56u
34
+ 305u
33
+ ··· + 2b 284, 21u
34
+ 135u
33
+ ··· + 4a 182, u
35
+ 7u
34
+ ··· + 32u 8i
I
u
2
= h3.02051 × 10
26
a
5
u
10
+ 6.10493 × 10
26
a
4
u
10
+ ··· + 8.97858 × 10
27
a 5.15875 × 10
27
,
6u
10
a
5
+ 3u
10
a
4
+ ··· 21a 22, u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1i
I
u
3
= hu
20
9u
18
+ 34u
16
66u
14
+ 59u
12
+ 4u
10
+ u
9
50u
8
4u
7
+ 25u
6
+ 6u
5
+ 9u
4
3u
3
6u
2
+ b,
u
19
u
18
+ ··· + a + 1,
u
21
10u
19
+ 42u
17
92u
15
+ 99u
13
14u
11
+ u
10
78u
9
5u
8
+ 60u
7
+ 9u
6
+ 9u
5
6u
4
18u
3
+ 1i
* 3 irreducible components of dim
C
= 0, with total 122 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h56u
34
+ 305u
33
+ · · · + 2b 284, 21u
34
+ 135u
33
+ · · · + 4a
182, u
35
+ 7u
34
+ · · · + 32u 8i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
5.25000u
34
33.7500u
33
+ ··· 225.500u + 45.5000
28u
34
305
2
u
33
+ ···
1307
2
u + 142
a
4
=
75
2
u
34
855
4
u
33
+ ···
4301
4
u + 227
69
4
u
34
+
401
4
u
33
+ ··· + 560u 116
a
2
=
145
8
u
34
+
829
8
u
33
+ ··· + 551u
229
2
1
4
u
34
11
4
u
33
+ ···
49
2
u + 5
a
8
=
5.75000u
34
+ 32.2500u
33
+ ··· + 158.500u 34.5000
53
2
u
34
+ 152u
33
+ ··· +
1537
2
u 162
a
3
=
47
8
u
34
291
8
u
33
+ ··· 232u +
95
2
67
4
u
34
+
369
4
u
33
+ ··· +
877
2
u 93
a
10
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 14u
34
83u
33
49u
32
+ 552u
31
+ 749u
30
1851u
29
2942u
28
+ 4360u
27
+ 5628u
26
8667u
25
3703u
24
+ 14324u
23
8289u
22
14914u
21
+ 26100u
20
98u
19
31837u
18
+
26886u
17
+11105u
16
37472u
15
+22359u
14
+14556u
13
32711u
12
+16400u
11
+10929u
10
19848u
9
+ 10674u
8
+ 3645u
7
8028u
6
+ 5365u
5
279u
4
1570u
3
+ 1326u
2
556u + 122
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
33u
34
+ ··· 40960u + 2048
c
2
, c
3
, c
7
c
9
u
35
u
34
+ ··· + u 1
c
4
, c
8
u
35
+ 6u
33
+ ··· + 2u 1
c
5
, c
6
, c
11
u
35
+ 7u
34
+ ··· + 32u 8
c
10
, c
12
u
35
21u
34
+ ··· 40656u + 2664
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
11y
34
+ ··· + 14680064y 4194304
c
2
, c
3
, c
7
c
9
y
35
35y
34
+ ··· 17y 1
c
4
, c
8
y
35
+ 12y
34
+ ··· + 12y 1
c
5
, c
6
, c
11
y
35
29y
34
+ ··· + 32y 64
c
10
, c
12
y
35
+ 23y
34
+ ··· + 27880992y 7096896
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.139537 + 0.931995I
a = 0.469976 + 1.183650I
b = 0.039825 + 0.846776I
12.11410 + 3.47580I 9.19807 3.18333I
u = 0.139537 0.931995I
a = 0.469976 1.183650I
b = 0.039825 0.846776I
12.11410 3.47580I 9.19807 + 3.18333I
u = 0.105864 + 0.897053I
a = 0.44787 + 2.53244I
b = 0.94342 + 1.35103I
13.7151 + 12.5847I 5.18347 6.53919I
u = 0.105864 0.897053I
a = 0.44787 2.53244I
b = 0.94342 1.35103I
13.7151 12.5847I 5.18347 + 6.53919I
u = 0.636350 + 0.611239I
a = 0.942619 0.315270I
b = 0.574414 0.905738I
6.32739 3.08954I 4.56075 + 2.58207I
u = 0.636350 0.611239I
a = 0.942619 + 0.315270I
b = 0.574414 + 0.905738I
6.32739 + 3.08954I 4.56075 2.58207I
u = 0.472041 + 0.666318I
a = 0.12197 1.43044I
b = 0.746358 1.022450I
6.79949 + 7.60511I 4.01817 7.64944I
u = 0.472041 0.666318I
a = 0.12197 + 1.43044I
b = 0.746358 + 1.022450I
6.79949 7.60511I 4.01817 + 7.64944I
u = 1.179240 + 0.305684I
a = 0.513879 0.597102I
b = 0.558931 1.032860I
0.229089 + 0.656619I 3.86417 1.98226I
u = 1.179240 0.305684I
a = 0.513879 + 0.597102I
b = 0.558931 + 1.032860I
0.229089 0.656619I 3.86417 + 1.98226I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.088955 + 0.772136I
a = 0.26673 2.09268I
b = 0.755605 0.993491I
3.07455 + 3.26826I 1.60586 2.42356I
u = 0.088955 0.772136I
a = 0.26673 + 2.09268I
b = 0.755605 + 0.993491I
3.07455 3.26826I 1.60586 + 2.42356I
u = 1.139170 + 0.518187I
a = 0.127484 + 0.654094I
b = 0.098871 + 0.884816I
9.05046 + 1.64505I 6.82659 2.03985I
u = 1.139170 0.518187I
a = 0.127484 0.654094I
b = 0.098871 0.884816I
9.05046 1.64505I 6.82659 + 2.03985I
u = 1.174450 + 0.465803I
a = 0.882414 + 0.762013I
b = 0.88026 + 1.32953I
10.43630 7.73132I 2.52329 + 3.10208I
u = 1.174450 0.465803I
a = 0.882414 0.762013I
b = 0.88026 1.32953I
10.43630 + 7.73132I 2.52329 3.10208I
u = 1.299980 + 0.228637I
a = 0.285197 1.010500I
b = 0.690456 0.023660I
4.00950 4.24760I 7.23862 + 6.55308I
u = 1.299980 0.228637I
a = 0.285197 + 1.010500I
b = 0.690456 + 0.023660I
4.00950 + 4.24760I 7.23862 6.55308I
u = 1.32721
a = 0.210158
b = 0.310775
2.90599 1.01730
u = 1.337390 + 0.048424I
a = 1.165230 0.179093I
b = 0.857438 + 0.443510I
6.13792 1.57371I 10.75089 + 1.90988I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.337390 0.048424I
a = 1.165230 + 0.179093I
b = 0.857438 0.443510I
6.13792 + 1.57371I 10.75089 1.90988I
u = 1.322170 + 0.332092I
a = 1.14041 1.41439I
b = 0.885409 0.964095I
1.35102 7.25772I 7.15814 + 5.17869I
u = 1.322170 0.332092I
a = 1.14041 + 1.41439I
b = 0.885409 + 0.964095I
1.35102 + 7.25772I 7.15814 5.17869I
u = 1.350510 + 0.404254I
a = 1.18027 + 1.81624I
b = 0.99393 + 1.35081I
9.1437 17.2482I 0. + 8.79521I
u = 1.350510 0.404254I
a = 1.18027 1.81624I
b = 0.99393 1.35081I
9.1437 + 17.2482I 0. 8.79521I
u = 1.37576 + 0.42280I
a = 0.814461 + 0.541541I
b = 0.138556 + 0.789658I
7.35335 8.32792I 0
u = 1.37576 0.42280I
a = 0.814461 0.541541I
b = 0.138556 0.789658I
7.35335 + 8.32792I 0
u = 1.42904 + 0.19328I
a = 1.014210 0.478584I
b = 0.934761 1.000360I
0.66389 10.53050I 0. + 8.08764I
u = 1.42904 0.19328I
a = 1.014210 + 0.478584I
b = 0.934761 + 1.000360I
0.66389 + 10.53050I 0. 8.08764I
u = 0.115996 + 0.532001I
a = 0.741619 0.675829I
b = 0.507252 + 0.043187I
0.37214 + 1.40883I 0.98492 6.02743I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.115996 0.532001I
a = 0.741619 + 0.675829I
b = 0.507252 0.043187I
0.37214 1.40883I 0.98492 + 6.02743I
u = 1.50719 + 0.09928I
a = 0.073091 + 0.314181I
b = 0.521031 0.600961I
0.874150 + 0.821107I 0
u = 1.50719 0.09928I
a = 0.073091 0.314181I
b = 0.521031 + 0.600961I
0.874150 0.821107I 0
u = 0.406834 + 0.217699I
a = 0.540240 + 0.373595I
b = 0.518952 + 0.467501I
0.843371 + 0.754361I 6.99963 3.56017I
u = 0.406834 0.217699I
a = 0.540240 0.373595I
b = 0.518952 0.467501I
0.843371 0.754361I 6.99963 + 3.56017I
8
II. I
u
2
= h3.02 × 10
26
a
5
u
10
+ 6.10 × 10
26
a
4
u
10
+ · · · + 8.98 × 10
27
a 5.16 ×
10
27
, 6u
10
a
5
+ 3u
10
a
4
+ · · · 21a 22, u
11
u
10
+ · · · + 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
a
0.268598a
5
u
10
0.542878a
4
u
10
+ ··· 7.98417a + 4.58740
a
4
=
0.321036a
5
u
10
0.325338a
4
u
10
+ ··· 7.53353a 3.76774
0.0259755a
5
u
10
+ 0.100771a
4
u
10
+ ··· 12.9385a 4.93938
a
2
=
0.189655a
5
u
10
+ 0.295091a
4
u
10
+ ··· + 3.91116a 1.41976
0.214494a
5
u
10
0.0282051a
4
u
10
+ ··· 1.53483a + 1.62382
a
8
=
0.0275683a
5
u
10
+ 0.636168a
4
u
10
+ ··· + 7.09030a + 1.91159
0.441675a
5
u
10
0.266441a
4
u
10
+ ··· 6.09828a + 5.22750
a
3
=
0.0475459a
5
u
10
+ 0.162203a
4
u
10
+ ··· + 4.46863a 1.45142
0.172998a
5
u
10
0.210633a
4
u
10
+ ··· 1.90938a + 2.02365
a
10
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
504039224100025701115835624
374849606289697770228372931
u
10
a
5
1172155967916274982800424384
374849606289697770228372931
u
10
a
4
+ ···
5075735830037470664374767476
374849606289697770228372931
a +
9670853239799093529630437046
374849606289697770228372931
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
22
c
2
, c
3
, c
7
c
9
u
66
+ u
65
+ ··· + 16520u 4657
c
4
, c
8
u
66
+ 3u
65
+ ··· 4900u 599
c
5
, c
6
, c
11
(u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
6
c
10
, c
12
(u
11
+ 3u
10
+ ··· 2u 1)
6
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)
22
c
2
, c
3
, c
7
c
9
y
66
57y
65
+ ··· + 855089512y + 21687649
c
4
, c
8
y
66
+ 19y
65
+ ··· + 9965280y + 358801
c
5
, c
6
, c
11
(y
11
9y
10
+ ··· 2y 1)
6
c
10
, c
12
(y
11
+ 11y
10
+ ··· + 6y 1)
6
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14725
a = 0.681685 + 0.142265I
b = 0.203831 1.332020I
0.28470 + 2.82812I 0.86650 2.97945I
u = 1.14725
a = 0.681685 0.142265I
b = 0.203831 + 1.332020I
0.28470 2.82812I 0.86650 + 2.97945I
u = 1.14725
a = 0.31870 + 1.52370I
b = 0.407188 + 0.993368I
0.28470 + 2.82812I 0.86650 2.97945I
u = 1.14725
a = 0.31870 1.52370I
b = 0.407188 0.993368I
0.28470 2.82812I 0.86650 + 2.97945I
u = 1.14725
a = 2.88593
b = 1.63935
3.85288 7.39580
u = 1.14725
a = 4.00191
b = 0.239197
3.85288 7.39580
u = 0.044199 + 0.849205I
a = 0.72801 1.52143I
b = 0.825388 0.962313I
7.55328 0.21340I 4.55146 0.15703I
u = 0.044199 + 0.849205I
a = 0.65416 + 1.77567I
b = 0.047317 + 0.807179I
7.55328 0.21340I 4.55146 0.15703I
u = 0.044199 + 0.849205I
a = 0.00071 2.02802I
b = 0.774141 0.907919I
7.55328 5.86965I 4.55146 + 5.80187I
u = 0.044199 + 0.849205I
a = 0.67415 + 2.52234I
b = 0.057490 + 0.752723I
11.69090 3.04152I 11.08072 + 2.82242I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.044199 + 0.849205I
a = 2.42363 + 2.14160I
b = 1.83368 + 1.32855I
11.69090 3.04152I 11.08072 + 2.82242I
u = 0.044199 + 0.849205I
a = 0.87468 + 3.12856I
b = 1.00287 + 1.66762I
7.55328 5.86965I 4.55146 + 5.80187I
u = 0.044199 0.849205I
a = 0.72801 + 1.52143I
b = 0.825388 + 0.962313I
7.55328 + 0.21340I 4.55146 + 0.15703I
u = 0.044199 0.849205I
a = 0.65416 1.77567I
b = 0.047317 0.807179I
7.55328 + 0.21340I 4.55146 + 0.15703I
u = 0.044199 0.849205I
a = 0.00071 + 2.02802I
b = 0.774141 + 0.907919I
7.55328 + 5.86965I 4.55146 5.80187I
u = 0.044199 0.849205I
a = 0.67415 2.52234I
b = 0.057490 0.752723I
11.69090 + 3.04152I 11.08072 2.82242I
u = 0.044199 0.849205I
a = 2.42363 2.14160I
b = 1.83368 1.32855I
11.69090 + 3.04152I 11.08072 2.82242I
u = 0.044199 0.849205I
a = 0.87468 3.12856I
b = 1.00287 1.66762I
7.55328 + 5.86965I 4.55146 5.80187I
u = 1.232090 + 0.392876I
a = 0.001588 + 1.162910I
b = 0.022577 + 0.868095I
3.88773 4.24511I 1.28155 + 3.61318I
u = 1.232090 + 0.392876I
a = 0.787317 0.081147I
b = 0.708436 1.070380I
3.88773 4.24511I 1.28155 + 3.61318I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.232090 + 0.392876I
a = 0.113083 0.696667I
b = 0.730235 0.947386I
3.88773 + 1.41114I 1.28155 2.34572I
u = 1.232090 + 0.392876I
a = 1.43869 + 0.88464I
b = 0.89523 + 1.68771I
3.88773 + 1.41114I 1.28155 2.34572I
u = 1.232090 + 0.392876I
a = 1.52441 + 1.86194I
b = 0.055694 + 0.670879I
8.02531 1.41699I 7.81082 + 0.63373I
u = 1.232090 + 0.392876I
a = 0.32325 + 2.50924I
b = 1.89288 + 1.18137I
8.02531 1.41699I 7.81082 + 0.63373I
u = 1.232090 0.392876I
a = 0.001588 1.162910I
b = 0.022577 0.868095I
3.88773 + 4.24511I 1.28155 3.61318I
u = 1.232090 0.392876I
a = 0.787317 + 0.081147I
b = 0.708436 + 1.070380I
3.88773 + 4.24511I 1.28155 3.61318I
u = 1.232090 0.392876I
a = 0.113083 + 0.696667I
b = 0.730235 + 0.947386I
3.88773 1.41114I 1.28155 + 2.34572I
u = 1.232090 0.392876I
a = 1.43869 0.88464I
b = 0.89523 1.68771I
3.88773 1.41114I 1.28155 + 2.34572I
u = 1.232090 0.392876I
a = 1.52441 1.86194I
b = 0.055694 0.670879I
8.02531 + 1.41699I 7.81082 0.63373I
u = 1.232090 0.392876I
a = 0.32325 2.50924I
b = 1.89288 1.18137I
8.02531 + 1.41699I 7.81082 0.63373I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.317220 + 0.129556I
a = 0.357508 0.783708I
b = 0.127941 + 0.198219I
3.27094 + 0.11860I 5.30912 1.13842I
u = 1.317220 + 0.129556I
a = 0.091337 + 0.694344I
b = 0.776455 0.377674I
3.27094 + 0.11860I 5.30912 1.13842I
u = 1.317220 + 0.129556I
a = 1.51101 0.25470I
b = 1.07397 1.07535I
3.27094 + 5.77484I 5.30912 7.09731I
u = 1.317220 + 0.129556I
a = 0.224220 + 0.066922I
b = 0.99581 1.28980I
0.86664 + 2.94672I 1.22015 4.11787I
u = 1.317220 + 0.129556I
a = 0.77168 1.59391I
b = 0.357770 1.008310I
0.86664 + 2.94672I 1.22015 4.11787I
u = 1.317220 + 0.129556I
a = 1.80083 0.09949I
b = 0.610792 + 0.587246I
3.27094 + 5.77484I 5.30912 7.09731I
u = 1.317220 0.129556I
a = 0.357508 + 0.783708I
b = 0.127941 0.198219I
3.27094 0.11860I 5.30912 + 1.13842I
u = 1.317220 0.129556I
a = 0.091337 0.694344I
b = 0.776455 + 0.377674I
3.27094 0.11860I 5.30912 + 1.13842I
u = 1.317220 0.129556I
a = 1.51101 + 0.25470I
b = 1.07397 + 1.07535I
3.27094 5.77484I 5.30912 + 7.09731I
u = 1.317220 0.129556I
a = 0.224220 0.066922I
b = 0.99581 + 1.28980I
0.86664 2.94672I 1.22015 + 4.11787I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.317220 0.129556I
a = 0.77168 + 1.59391I
b = 0.357770 + 1.008310I
0.86664 2.94672I 1.22015 + 4.11787I
u = 1.317220 0.129556I
a = 1.80083 + 0.09949I
b = 0.610792 0.587246I
3.27094 5.77484I 5.30912 + 7.09731I
u = 1.304640 + 0.385413I
a = 0.604532 1.165350I
b = 0.919978 0.859160I
3.34246 + 4.64712I 0.26116 2.57516I
u = 1.304640 + 0.385413I
a = 1.17144 + 0.97350I
b = 0.108018 + 0.747505I
3.34246 + 4.64712I 0.26116 2.57516I
u = 1.304640 + 0.385413I
a = 1.62199 0.36591I
b = 1.76774 + 1.44412I
7.48004 + 7.47524I 6.79043 5.55460I
u = 1.304640 + 0.385413I
a = 0.00454 + 1.73852I
b = 0.053146 + 0.819466I
7.48004 + 7.47524I 6.79043 5.55460I
u = 1.304640 + 0.385413I
a = 1.36908 1.57746I
b = 0.807452 0.868914I
3.34246 + 10.30340I 0.26116 8.53405I
u = 1.304640 + 0.385413I
a = 1.27201 + 2.16803I
b = 1.09048 + 1.63810I
3.34246 + 10.30340I 0.26116 8.53405I
u = 1.304640 0.385413I
a = 0.604532 + 1.165350I
b = 0.919978 + 0.859160I
3.34246 4.64712I 0.26116 + 2.57516I
u = 1.304640 0.385413I
a = 1.17144 0.97350I
b = 0.108018 0.747505I
3.34246 4.64712I 0.26116 + 2.57516I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.304640 0.385413I
a = 1.62199 + 0.36591I
b = 1.76774 1.44412I
7.48004 7.47524I 6.79043 + 5.55460I
u = 1.304640 0.385413I
a = 0.00454 1.73852I
b = 0.053146 0.819466I
7.48004 7.47524I 6.79043 + 5.55460I
u = 1.304640 0.385413I
a = 1.36908 + 1.57746I
b = 0.807452 + 0.868914I
3.34246 10.30340I 0.26116 + 8.53405I
u = 1.304640 0.385413I
a = 1.27201 2.16803I
b = 1.09048 1.63810I
3.34246 10.30340I 0.26116 + 8.53405I
u = 0.271947 + 0.385187I
a = 0.517022 0.454203I
b = 0.045920 + 0.690303I
1.60594 + 1.69682I 0.47805 + 3.07840I
u = 0.271947 + 0.385187I
a = 0.63681 1.75387I
b = 1.104940 0.853877I
5.74353 1.13130I 7.00731 + 6.05785I
u = 0.271947 + 0.385187I
a = 0.43984 1.84859I
b = 0.753427 1.132850I
1.60594 3.95942I 0.47805 + 9.03730I
u = 0.271947 + 0.385187I
a = 1.96371 0.33369I
b = 0.511166 0.764927I
1.60594 + 1.69682I 0.47805 + 3.07840I
u = 0.271947 + 0.385187I
a = 1.81520 + 0.94189I
b = 0.468912 + 0.757250I
1.60594 3.95942I 0.47805 + 9.03730I
u = 0.271947 + 0.385187I
a = 0.39122 4.07994I
b = 0.482757 0.696049I
5.74353 1.13130I 7.00731 + 6.05785I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.271947 0.385187I
a = 0.517022 + 0.454203I
b = 0.045920 0.690303I
1.60594 1.69682I 0.47805 3.07840I
u = 0.271947 0.385187I
a = 0.63681 + 1.75387I
b = 1.104940 + 0.853877I
5.74353 + 1.13130I 7.00731 6.05785I
u = 0.271947 0.385187I
a = 0.43984 + 1.84859I
b = 0.753427 + 1.132850I
1.60594 + 3.95942I 0.47805 9.03730I
u = 0.271947 0.385187I
a = 1.96371 + 0.33369I
b = 0.511166 + 0.764927I
1.60594 1.69682I 0.47805 3.07840I
u = 0.271947 0.385187I
a = 1.81520 0.94189I
b = 0.468912 0.757250I
1.60594 + 3.95942I 0.47805 9.03730I
u = 0.271947 0.385187I
a = 0.39122 + 4.07994I
b = 0.482757 + 0.696049I
5.74353 + 1.13130I 7.00731 6.05785I
18
III. I
u
3
=
hu
20
9u
18
+· · ·6u
2
+b, u
19
u
18
+· · ·+a+1, u
21
10u
19
+· · ·18u
3
+1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
9
=
u
19
+ u
18
+ ··· + 5u 1
u
20
+ 9u
18
+ ··· + 3u
3
+ 6u
2
a
4
=
u
20
u
19
+ ··· + 6u + 3
u
19
8u
17
+ ··· + 2u 1
a
2
=
u
20
+ u
19
+ ··· 17u
2
4u
u
20
+ u
19
+ ··· + 3u 1
a
8
=
u
19
+ u
18
+ ··· + 13u
2
+ 5u
u
20
+ u
19
+ ··· + 9u
3
+ 5u
2
a
3
=
u
20
+ u
19
+ ··· 17u
2
3u
u
20
+ 2u
19
+ ··· + 2u 2
a
10
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
20
4u
19
59u
18
+ 33u
17
+ 199u
16
107u
15
312u
14
+ 155u
13
+ 138u
12
42u
11
+
219u
10
138u
9
245u
8
+ 102u
7
33u
6
+ 61u
5
+ 85u
4
52u
3
+ 20u
2
13u 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
6u
20
+ ··· 2u
2
+ 1
c
2
, c
7
u
21
+ u
20
+ ··· + u + 1
c
3
, c
9
u
21
u
20
+ ··· + u 1
c
4
, c
8
u
21
+ 3u
19
+ ··· + 2u
2
1
c
5
, c
6
u
21
10u
19
+ ··· 18u
3
+ 1
c
10
, c
12
u
21
+ 6u
19
+ ··· + 3u
2
1
c
11
u
21
10u
19
+ ··· 18u
3
1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
10y
20
+ ··· + 4y 1
c
2
, c
3
, c
7
c
9
y
21
21y
20
+ ··· + 15y 1
c
4
, c
8
y
21
+ 6y
20
+ ··· + 4y 1
c
5
, c
6
, c
11
y
21
20y
20
+ ··· + 12y
2
1
c
10
, c
12
y
21
+ 12y
20
+ ··· + 6y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.062614 + 0.857160I
a = 0.87964 + 1.46799I
b = 0.753449 + 0.596686I
10.38470 + 2.69700I 3.62255 0.89519I
u = 0.062614 0.857160I
a = 0.87964 1.46799I
b = 0.753449 0.596686I
10.38470 2.69700I 3.62255 + 0.89519I
u = 1.18462
a = 3.69060
b = 1.03309
3.22448 8.49570
u = 1.235030 + 0.104057I
a = 0.045191 0.732622I
b = 0.152862 1.129160I
1.16566 3.99750I 3.65944 + 7.63178I
u = 1.235030 0.104057I
a = 0.045191 + 0.732622I
b = 0.152862 + 1.129160I
1.16566 + 3.99750I 3.65944 7.63178I
u = 1.234780 + 0.272929I
a = 0.531801 0.777750I
b = 0.574518 1.263340I
0.513798 + 0.234672I 0.88949 1.85883I
u = 1.234780 0.272929I
a = 0.531801 + 0.777750I
b = 0.574518 + 1.263340I
0.513798 0.234672I 0.88949 + 1.85883I
u = 1.212920 + 0.392860I
a = 0.25622 + 1.81030I
b = 0.857416 + 0.486218I
6.84641 + 1.79152I 0.05538 3.12575I
u = 1.212920 0.392860I
a = 0.25622 1.81030I
b = 0.857416 0.486218I
6.84641 1.79152I 0.05538 + 3.12575I
u = 0.072517 + 0.710236I
a = 0.05689 2.37401I
b = 0.689130 1.135240I
4.06754 3.77401I 6.57499 + 5.11487I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.072517 0.710236I
a = 0.05689 + 2.37401I
b = 0.689130 + 1.135240I
4.06754 + 3.77401I 6.57499 5.11487I
u = 1.323560 + 0.298366I
a = 1.40817 1.17675I
b = 0.816737 1.050640I
0.33148 + 7.43161I 1.41601 6.66446I
u = 1.323560 0.298366I
a = 1.40817 + 1.17675I
b = 0.816737 + 1.050640I
0.33148 7.43161I 1.41601 + 6.66446I
u = 1.316400 + 0.393822I
a = 0.572655 + 0.411414I
b = 0.660701 + 0.695110I
6.07430 7.19164I 0.23497 + 3.77817I
u = 1.316400 0.393822I
a = 0.572655 0.411414I
b = 0.660701 0.695110I
6.07430 + 7.19164I 0.23497 3.77817I
u = 1.391350 + 0.102602I
a = 0.030191 + 0.648490I
b = 0.447297 0.579322I
3.05033 0.86818I 1.73934 + 7.74915I
u = 1.391350 0.102602I
a = 0.030191 0.648490I
b = 0.447297 + 0.579322I
3.05033 + 0.86818I 1.73934 7.74915I
u = 1.47523
a = 0.307400
b = 0.423333
0.601618 3.40550
u = 0.385686
a = 3.97045
b = 0.760533
5.70574 6.72950
u = 0.179252 + 0.337282I
a = 2.00847 + 0.16947I
b = 0.314759 0.878350I
2.10523 + 2.46905I 7.25568 4.96271I
23
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.179252 0.337282I
a = 2.00847 0.16947I
b = 0.314759 + 0.878350I
2.10523 2.46905I 7.25568 + 4.96271I
24
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
+ u
2
1)
22
)(u
21
6u
20
+ ··· 2u
2
+ 1)
· (u
35
33u
34
+ ··· 40960u + 2048)
c
2
, c
7
(u
21
+ u
20
+ ··· + u + 1)(u
35
u
34
+ ··· + u 1)
· (u
66
+ u
65
+ ··· + 16520u 4657)
c
3
, c
9
(u
21
u
20
+ ··· + u 1)(u
35
u
34
+ ··· + u 1)
· (u
66
+ u
65
+ ··· + 16520u 4657)
c
4
, c
8
(u
21
+ 3u
19
+ ··· + 2u
2
1)(u
35
+ 6u
33
+ ··· + 2u 1)
· (u
66
+ 3u
65
+ ··· 4900u 599)
c
5
, c
6
(u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
6
· (u
21
10u
19
+ ··· 18u
3
+ 1)(u
35
+ 7u
34
+ ··· + 32u 8)
c
10
, c
12
((u
11
+ 3u
10
+ ··· 2u 1)
6
)(u
21
+ 6u
19
+ ··· + 3u
2
1)
· (u
35
21u
34
+ ··· 40656u + 2664)
c
11
(u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
6
· (u
21
10u
19
+ ··· 18u
3
1)(u
35
+ 7u
34
+ ··· + 32u 8)
25
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
y
2
+ 2y 1)
22
)(y
21
10y
20
+ ··· + 4y 1)
· (y
35
11y
34
+ ··· + 14680064y 4194304)
c
2
, c
3
, c
7
c
9
(y
21
21y
20
+ ··· + 15y 1)(y
35
35y
34
+ ··· 17y 1)
· (y
66
57y
65
+ ··· + 855089512y + 21687649)
c
4
, c
8
(y
21
+ 6y
20
+ ··· + 4y 1)(y
35
+ 12y
34
+ ··· + 12y 1)
· (y
66
+ 19y
65
+ ··· + 9965280y + 358801)
c
5
, c
6
, c
11
((y
11
9y
10
+ ··· 2y 1)
6
)(y
21
20y
20
+ ··· + 12y
2
1)
· (y
35
29y
34
+ ··· + 32y 64)
c
10
, c
12
((y
11
+ 11y
10
+ ··· + 6y 1)
6
)(y
21
+ 12y
20
+ ··· + 6y 1)
· (y
35
+ 23y
34
+ ··· + 27880992y 7096896)
26