10
113
(K10a
36
)
A knot diagram
1
Linearized knot diagam
4 7 6 8 1 10 9 5 2 3
Solving Sequence
3,10 1,7
2 6 4 5 9 8
c
10
c
2
c
6
c
3
c
5
c
9
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h1.09017 × 10
16
u
25
1.42680 × 10
17
u
24
+ ··· + 1.22316 × 10
16
b 1.07995 × 10
16
,
1.10038 × 10
16
u
25
1.55970 × 10
17
u
24
+ ··· + 2.44631 × 10
16
a 3.72028 × 10
16
, u
26
14u
25
+ ··· 5u + 2i
I
u
2
= hu
18
a + u
18
+ ··· 2a + 1, 2u
18
a + 3u
18
+ ··· 18a 13, u
19
+ 9u
18
+ ··· u 2i
I
u
3
= h−u
2
+ b u 1, u
3
+ 3a u 1, u
4
+ 3u
3
+ 5u
2
+ 5u + 3i
I
u
4
= hu
2
+ b + 2u + 2, u
2
+ a u 2, u
3
+ 2u
2
+ 3u + 1i
I
v
1
= ha, b + v, v
2
v + 1i
* 5 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.09×10
16
u
25
1.43×10
17
u
24
+· · ·+1.22×10
16
b1.08×10
16
, 1.10×10
16
u
25
1.56 × 10
17
u
24
+ · · · + 2.45 × 10
16
a 3.72 × 10
16
, u
26
14u
25
+ · · · 5u + 2i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
7
=
0.449813u
25
+ 6.37572u
24
+ ··· 2.20872u + 1.52077
0.891275u
25
+ 11.6649u
24
+ ··· 2.84515u + 0.882924
a
2
=
0.129701u
25
2.02435u
24
+ ··· 4.90429u + 1.76047
0.0404708u
25
0.734657u
24
+ ··· 1.02816u + 0.178460
a
6
=
0.441462u
25
5.28919u
24
+ ··· + 0.636436u + 0.637845
0.891275u
25
+ 11.6649u
24
+ ··· 2.84515u + 0.882924
a
4
=
0.993712u
25
13.0075u
24
+ ··· + 1.68701u 0.405418
0.904482u
25
+ 11.7178u
24
+ ··· 3.56314u + 1.98742
a
5
=
0.363122u
25
4.69350u
24
+ ··· + 1.36473u 0.261781
0.0933259u
25
+ 1.56850u
24
+ ··· 0.496488u 0.119215
a
9
=
0.433618u
25
+ 6.06965u
24
+ ··· + 9.02432u 0.696343
0.0726845u
25
0.832738u
24
+ ··· + 2.33024u 0.595532
a
8
=
0.101086u
25
+ 1.86335u
24
+ ··· + 7.57533u 0.827238
0.651226u
25
+ 8.60822u
24
+ ··· + 0.0145807u + 0.0950498
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
12238612154218315
12231573450758407
u
25
+
120808672137987925
12231573450758407
u
24
+···+
208460927880809
12231573450758407
u
140870794716261400
12231573450758407
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
26
+ 4u
25
+ ··· 2u + 1
c
2
, c
5
u
26
+ 3u
24
+ ··· 2u + 1
c
3
, c
6
u
26
+ 2u
25
+ ··· + 2u + 1
c
4
, c
8
u
26
+ 6u
25
+ ··· + 25u + 4
c
7
u
26
+ 10u
25
+ ··· + 81u + 16
c
10
u
26
+ 14u
25
+ ··· + 5u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
26
10y
25
+ ··· 18y + 1
c
2
, c
5
y
26
+ 6y
25
+ ··· + 6y + 1
c
3
, c
6
y
26
+ 14y
25
+ ··· + 30y + 1
c
4
, c
8
y
26
10y
25
+ ··· 81y + 16
c
7
y
26
+ 10y
25
+ ··· + 9439y + 256
c
10
y
26
+ 8y
24
+ ··· 21y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.056680 + 0.510753I
a = 0.215461 + 0.700629I
b = 1.09337 + 1.26772I
1.49747 + 5.09068I 3.0367 14.8892I
u = 1.056680 0.510753I
a = 0.215461 0.700629I
b = 1.09337 1.26772I
1.49747 5.09068I 3.0367 + 14.8892I
u = 1.197700 + 0.220817I
a = 0.079663 0.840370I
b = 0.005740 0.465412I
2.92221 2.66541I 1.40924 + 2.72285I
u = 1.197700 0.220817I
a = 0.079663 + 0.840370I
b = 0.005740 + 0.465412I
2.92221 + 2.66541I 1.40924 2.72285I
u = 1.306830 + 0.079067I
a = 0.107470 + 0.279551I
b = 0.215760 + 1.218550I
0.13330 + 3.14853I 10.05225 4.78603I
u = 1.306830 0.079067I
a = 0.107470 0.279551I
b = 0.215760 1.218550I
0.13330 3.14853I 10.05225 + 4.78603I
u = 0.493624 + 0.435869I
a = 0.905680 0.839887I
b = 0.941763 0.771472I
2.18699 0.53885I 10.45014 + 2.98932I
u = 0.493624 0.435869I
a = 0.905680 + 0.839887I
b = 0.941763 + 0.771472I
2.18699 + 0.53885I 10.45014 2.98932I
u = 1.022930 + 0.871070I
a = 0.149244 0.992194I
b = 0.98451 1.19337I
4.53791 + 8.53907I 8.63796 7.50515I
u = 1.022930 0.871070I
a = 0.149244 + 0.992194I
b = 0.98451 + 1.19337I
4.53791 8.53907I 8.63796 + 7.50515I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.129304 + 0.643314I
a = 0.984267 0.517979I
b = 0.031311 0.673436I
0.924615 1.060120I 5.32469 + 4.59251I
u = 0.129304 0.643314I
a = 0.984267 + 0.517979I
b = 0.031311 + 0.673436I
0.924615 + 1.060120I 5.32469 4.59251I
u = 0.967641 + 1.016650I
a = 0.486502 + 0.264040I
b = 0.211831 + 0.733834I
4.93342 1.67636I 14.6461 + 4.2929I
u = 0.967641 1.016650I
a = 0.486502 0.264040I
b = 0.211831 0.733834I
4.93342 + 1.67636I 14.6461 4.2929I
u = 1.26531 + 0.92939I
a = 0.020000 + 0.955891I
b = 0.97670 + 1.20748I
2.62082 + 10.45440I 1.93774 5.95159I
u = 1.26531 0.92939I
a = 0.020000 0.955891I
b = 0.97670 1.20748I
2.62082 10.45440I 1.93774 + 5.95159I
u = 0.014473 + 0.410285I
a = 2.05321 + 1.74511I
b = 0.284111 + 0.970184I
1.92544 + 2.11547I 8.52748 4.72090I
u = 0.014473 0.410285I
a = 2.05321 1.74511I
b = 0.284111 0.970184I
1.92544 2.11547I 8.52748 + 4.72090I
u = 0.34430 + 1.56008I
a = 0.493219 0.417449I
b = 0.152881 0.590554I
0.16560 2.24390I 7.60792 + 3.01225I
u = 0.34430 1.56008I
a = 0.493219 + 0.417449I
b = 0.152881 + 0.590554I
0.16560 + 2.24390I 7.60792 3.01225I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.26295 + 1.01918I
a = 0.042904 1.006760I
b = 0.97925 1.20625I
0.9109 + 16.4735I 4.00000 9.70500I
u = 1.26295 1.01918I
a = 0.042904 + 1.006760I
b = 0.97925 + 1.20625I
0.9109 16.4735I 4.00000 + 9.70500I
u = 0.281192 + 0.094635I
a = 1.01688 + 4.90932I
b = 0.054013 + 1.156590I
1.56544 2.09555I 7.86102 + 3.20965I
u = 0.281192 0.094635I
a = 1.01688 4.90932I
b = 0.054013 1.156590I
1.56544 + 2.09555I 7.86102 3.20965I
u = 0.64380 + 1.75632I
a = 0.459645 + 0.377201I
b = 0.202381 + 0.586735I
0.95700 7.52275I 0
u = 0.64380 1.75632I
a = 0.459645 0.377201I
b = 0.202381 0.586735I
0.95700 + 7.52275I 0
7
II. I
u
2
=
hu
18
a+u
18
+· · ·2a+1, 2u
18
a+3u
18
+· · ·18a13, u
19
+9u
18
+· · ·u2i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
7
=
a
u
18
a u
18
+ ··· + 2a 1
a
2
=
u
18
a +
1
2
u
18
+ ··· a
3
2
u
18
+ 8u
17
+ ··· 2a 1
a
6
=
u
18
a + u
18
+ ··· a + 1
u
18
a u
18
+ ··· + 2a 1
a
4
=
u
18
a
1
2
u
18
+ ··· + a +
1
2
1
a
5
=
u
18
a + 8u
17
a + ··· a + 2
u
18
a 2u
18
+ ··· + 2a + 1
a
9
=
1
2
u
18
7
2
u
17
+ ··· a +
1
2
u
18
a + u
18
+ ··· + u 3
a
8
=
u
17
a
1
2
u
18
+ ··· + 2a +
1
2
u
17
8u
16
+ ··· 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 5u
18
43u
17
177u
16
432u
15
640u
14
457u
13
+ 209u
12
+ 824u
11
+ 687u
10
101u
9
627u
8
368u
7
+ 164u
6
+ 274u
5
+ 34u
4
104u
3
41u
2
+ 25u + 9
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
38
3u
37
+ ··· + 10u 1
c
2
, c
5
u
38
+ 2u
37
+ ··· + 109u + 11
c
3
, c
6
u
38
+ 4u
37
+ ··· + 7u + 1
c
4
, c
8
(u
19
2u
18
+ ··· 4u + 1)
2
c
7
(u
19
+ 8u
18
+ ··· + 4u + 1)
2
c
10
(u
19
9u
18
+ ··· u + 2)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
38
+ 13y
37
+ ··· + 2y + 1
c
2
, c
5
y
38
+ 4y
37
+ ··· 13311y + 121
c
3
, c
6
y
38
8y
37
+ ··· + 5y + 1
c
4
, c
8
(y
19
8y
18
+ ··· + 4y 1)
2
c
7
(y
19
+ 8y
18
+ ··· 16y 1)
2
c
10
(y
19
3y
18
+ ··· + 37y 4)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.488744 + 1.038280I
a = 0.478820 + 0.914222I
b = 1.13156 + 1.02165I
1.59095 7.59815I 9.53397 + 8.95368I
u = 0.488744 + 1.038280I
a = 1.01797 1.24322I
b = 0.207487 0.730234I
1.59095 7.59815I 9.53397 + 8.95368I
u = 0.488744 1.038280I
a = 0.478820 0.914222I
b = 1.13156 1.02165I
1.59095 + 7.59815I 9.53397 8.95368I
u = 0.488744 1.038280I
a = 1.01797 + 1.24322I
b = 0.207487 + 0.730234I
1.59095 + 7.59815I 9.53397 8.95368I
u = 0.752606 + 0.874521I
a = 0.794589 + 0.607095I
b = 0.361281 + 0.577577I
0.10793 3.14909I 5.58222 + 3.79428I
u = 0.752606 + 0.874521I
a = 0.312041 0.899421I
b = 0.895728 0.988619I
0.10793 3.14909I 5.58222 + 3.79428I
u = 0.752606 0.874521I
a = 0.794589 0.607095I
b = 0.361281 0.577577I
0.10793 + 3.14909I 5.58222 3.79428I
u = 0.752606 0.874521I
a = 0.312041 + 0.899421I
b = 0.895728 + 0.988619I
0.10793 + 3.14909I 5.58222 3.79428I
u = 1.211130 + 0.137559I
a = 0.091441 0.907433I
b = 0.287046 0.731500I
2.95026 2.66622I 1.58619 + 3.20879I
u = 1.211130 + 0.137559I
a = 0.040607 0.755883I
b = 0.261106 0.186172I
2.95026 2.66622I 1.58619 + 3.20879I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.211130 0.137559I
a = 0.091441 + 0.907433I
b = 0.287046 + 0.731500I
2.95026 + 2.66622I 1.58619 3.20879I
u = 1.211130 0.137559I
a = 0.040607 + 0.755883I
b = 0.261106 + 0.186172I
2.95026 + 2.66622I 1.58619 3.20879I
u = 0.687103 + 0.235969I
a = 0.068144 + 1.145470I
b = 1.44986 + 0.74441I
2.42247 + 8.22022I 0.13214 8.57000I
u = 0.687103 + 0.235969I
a = 0.69993 2.21894I
b = 0.854742 0.601611I
2.42247 + 8.22022I 0.13214 8.57000I
u = 0.687103 0.235969I
a = 0.068144 1.145470I
b = 1.44986 0.74441I
2.42247 8.22022I 0.13214 + 8.57000I
u = 0.687103 0.235969I
a = 0.69993 + 2.21894I
b = 0.854742 + 0.601611I
2.42247 8.22022I 0.13214 + 8.57000I
u = 0.689008 + 0.139635I
a = 0.128846 1.148580I
b = 1.37561 0.64670I
4.26470 + 2.32942I 3.40004 3.00608I
u = 0.689008 + 0.139635I
a = 0.76853 + 1.84609I
b = 0.966499 + 0.555876I
4.26470 + 2.32942I 3.40004 3.00608I
u = 0.689008 0.139635I
a = 0.128846 + 1.148580I
b = 1.37561 + 0.64670I
4.26470 2.32942I 3.40004 + 3.00608I
u = 0.689008 0.139635I
a = 0.76853 1.84609I
b = 0.966499 0.555876I
4.26470 2.32942I 3.40004 + 3.00608I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.378245 + 0.567353I
a = 0.400712 + 1.127850I
b = 1.02428 + 1.44155I
3.84277 0.76131I 13.4982 + 7.0538I
u = 0.378245 + 0.567353I
a = 2.53438 0.54959I
b = 0.057884 0.472439I
3.84277 0.76131I 13.4982 + 7.0538I
u = 0.378245 0.567353I
a = 0.400712 1.127850I
b = 1.02428 1.44155I
3.84277 + 0.76131I 13.4982 7.0538I
u = 0.378245 0.567353I
a = 2.53438 + 0.54959I
b = 0.057884 + 0.472439I
3.84277 + 0.76131I 13.4982 7.0538I
u = 0.865146 + 1.042810I
a = 0.422088 + 0.852186I
b = 0.475702 + 0.708695I
0.09217 3.26203I 7.82857 + 4.58696I
u = 0.865146 + 1.042810I
a = 0.299650 0.748328I
b = 0.926354 0.812087I
0.09217 3.26203I 7.82857 + 4.58696I
u = 0.865146 1.042810I
a = 0.422088 0.852186I
b = 0.475702 0.708695I
0.09217 + 3.26203I 7.82857 4.58696I
u = 0.865146 1.042810I
a = 0.299650 + 0.748328I
b = 0.926354 + 0.812087I
0.09217 + 3.26203I 7.82857 4.58696I
u = 0.494703
a = 0.176592
b = 1.65217
2.37666 7.11410
u = 0.494703
a = 2.43502
b = 0.904693
2.37666 7.11410
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.23842 + 1.01885I
a = 0.079408 1.045930I
b = 0.651625 0.880608I
2.68628 1.90197I 1.62421 + 1.37993I
u = 1.23842 + 1.01885I
a = 0.214414 + 0.212371I
b = 0.877077 + 0.378271I
2.68628 1.90197I 1.62421 + 1.37993I
u = 1.23842 1.01885I
a = 0.079408 + 1.045930I
b = 0.651625 + 0.880608I
2.68628 + 1.90197I 1.62421 1.37993I
u = 1.23842 1.01885I
a = 0.214414 0.212371I
b = 0.877077 0.378271I
2.68628 + 1.90197I 1.62421 1.37993I
u = 1.18917 + 1.13858I
a = 0.003038 + 1.092820I
b = 0.617784 + 0.888572I
2.32292 6.77576I 0.09240 + 8.89089I
u = 1.18917 + 1.13858I
a = 0.319294 0.326713I
b = 0.963591 0.457047I
2.32292 6.77576I 0.09240 + 8.89089I
u = 1.18917 1.13858I
a = 0.003038 1.092820I
b = 0.617784 0.888572I
2.32292 + 6.77576I 0.09240 8.89089I
u = 1.18917 1.13858I
a = 0.319294 + 0.326713I
b = 0.963591 + 0.457047I
2.32292 + 6.77576I 0.09240 8.89089I
14
III. I
u
3
= h−u
2
+ b u 1, u
3
+ 3a u 1, u
4
+ 3u
3
+ 5u
2
+ 5u + 3i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
7
=
1
3
u
3
+
1
3
u +
1
3
u
2
+ u + 1
a
2
=
1
3
u
3
u
2
5
3
u
2
3
u + 1
a
6
=
1
3
u
3
u
2
2
3
u
2
3
u
2
+ u + 1
a
4
=
2
3
u
3
+ u
2
+
4
3
u +
1
3
u
3
2u
2
2u 2
a
5
=
2
3
u
3
+ u
2
+
4
3
u +
1
3
u 2
a
9
=
1
3
u
3
+ u
2
+
2
3
u +
2
3
u
2
2u 1
a
8
=
0
u
3
2u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
+ 8u
2
+ 16u + 9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
4
u
3
+ 2u
2
+ 1
c
2
, c
5
, c
8
u
4
u
3
+ 1
c
3
, c
6
u
4
u + 1
c
4
u
4
+ u
3
+ 1
c
10
u
4
+ 3u
3
+ 5u
2
+ 5u + 3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
4
+ 3y
3
+ 6y
2
+ 4y + 1
c
2
, c
4
, c
5
c
8
y
4
y
3
+ 2y
2
+ 1
c
3
, c
6
y
4
+ 2y
2
y + 1
c
10
y
4
+ y
3
+ y
2
+ 5y + 9
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.324902 + 1.227920I
a = 0.253420 + 0.896839I
b = 0.727136 + 0.430014I
0.20545 7.54387I 3.11022 + 8.87572I
u = 0.324902 1.227920I
a = 0.253420 0.896839I
b = 0.727136 0.430014I
0.20545 + 7.54387I 3.11022 8.87572I
u = 1.175100 + 0.691825I
a = 0.079913 0.614328I
b = 0.727136 0.934099I
1.43949 4.22398I 2.38978 + 5.66623I
u = 1.175100 0.691825I
a = 0.079913 + 0.614328I
b = 0.727136 + 0.934099I
1.43949 + 4.22398I 2.38978 5.66623I
18
IV. I
u
4
= hu
2
+ b + 2u + 2, u
2
+ a u 2, u
3
+ 2u
2
+ 3u + 1i
(i) Arc colorings
a
3
=
0
u
a
10
=
1
0
a
1
=
1
u
2
a
7
=
u
2
+ u + 2
u
2
2u 2
a
2
=
u
2
2u 2
u + 1
a
6
=
2u
2
+ 3u + 4
u
2
2u 2
a
4
=
2u
2
3u 5
u
2
+ 2u + 2
a
5
=
u
2
+ 2u + 3
u
2
1
a
9
=
u
2
+ u + 2
u
2
2u 1
a
8
=
3u
2
+ 4u + 6
u
2
3u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
2
14u 24
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
3
u
2
+ 2u 1
c
2
, c
5
u
3
+ u
2
1
c
3
, c
4
, c
6
u
3
u 1
c
7
u
3
2u
2
+ u 1
c
8
u
3
u + 1
c
10
u
3
+ 2u
2
+ 3u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
y
3
y
2
+ 2y 1
c
3
, c
4
, c
6
c
8
y
3
2y
2
+ y 1
c
7
y
3
2y
2
3y 1
c
10
y
3
+ 2y
2
+ 5y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.78492 + 1.30714I
a = 0.122561 0.744862I
b = 0.662359 0.562280I
1.37919 2.82812I 0.99341 + 4.27206I
u = 0.78492 1.30714I
a = 0.122561 + 0.744862I
b = 0.662359 + 0.562280I
1.37919 + 2.82812I 0.99341 4.27206I
u = 0.430160
a = 1.75488
b = 1.32472
2.75839 20.0130
22
V. I
v
1
= ha, b + v, v
2
v + 1i
(i) Arc colorings
a
3
=
v
0
a
10
=
1
0
a
1
=
1
0
a
7
=
0
v
a
2
=
v
1
a
6
=
v
v
a
4
=
v 1
1
a
5
=
0
v
a
9
=
v + 1
1
a
8
=
v + 1
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
9
(u 1)
2
c
2
, c
3
, c
5
c
6
u
2
u + 1
c
8
(u + 1)
2
c
10
u
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
8
, c
9
(y 1)
2
c
2
, c
3
, c
5
c
6
y
2
+ y + 1
c
10
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
3.28987 9.00000
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
3.28987 9.00000
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
((u 1)
2
)(u
3
u
2
+ 2u 1)(u
4
u
3
+ 2u
2
+ 1)(u
26
+ 4u
25
+ ··· 2u + 1)
· (u
38
3u
37
+ ··· + 10u 1)
c
2
, c
5
(u
2
u + 1)(u
3
+ u
2
1)(u
4
u
3
+ 1)(u
26
+ 3u
24
+ ··· 2u + 1)
· (u
38
+ 2u
37
+ ··· + 109u + 11)
c
3
, c
6
(u
2
u + 1)(u
3
u 1)(u
4
u + 1)(u
26
+ 2u
25
+ ··· + 2u + 1)
· (u
38
+ 4u
37
+ ··· + 7u + 1)
c
4
((u 1)
2
)(u
3
u 1)(u
4
+ u
3
+ 1)(u
19
2u
18
+ ··· 4u + 1)
2
· (u
26
+ 6u
25
+ ··· + 25u + 4)
c
7
(u 1)
2
(u
3
2u
2
+ u 1)(u
4
u
3
+ 2u
2
+ 1)
· ((u
19
+ 8u
18
+ ··· + 4u + 1)
2
)(u
26
+ 10u
25
+ ··· + 81u + 16)
c
8
((u + 1)
2
)(u
3
u + 1)(u
4
u
3
+ 1)(u
19
2u
18
+ ··· 4u + 1)
2
· (u
26
+ 6u
25
+ ··· + 25u + 4)
c
10
u
2
(u
3
+ 2u
2
+ 3u + 1)(u
4
+ 3u
3
+ 5u
2
+ 5u + 3)
· ((u
19
9u
18
+ ··· u + 2)
2
)(u
26
+ 14u
25
+ ··· + 5u + 2)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y 1)
2
(y
3
+ 3y
2
+ 2y 1)(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
· (y
26
10y
25
+ ··· 18y + 1)(y
38
+ 13y
37
+ ··· + 2y + 1)
c
2
, c
5
(y
2
+ y + 1)(y
3
y
2
+ 2y 1)(y
4
y
3
+ 2y
2
+ 1)(y
26
+ 6y
25
+ ··· + 6y + 1)
· (y
38
+ 4y
37
+ ··· 13311y + 121)
c
3
, c
6
(y
2
+ y + 1)(y
3
2y
2
+ y 1)(y
4
+ 2y
2
y + 1)
· (y
26
+ 14y
25
+ ··· + 30y + 1)(y
38
8y
37
+ ··· + 5y + 1)
c
4
, c
8
(y 1)
2
(y
3
2y
2
+ y 1)(y
4
y
3
+ 2y
2
+ 1)
· ((y
19
8y
18
+ ··· + 4y 1)
2
)(y
26
10y
25
+ ··· 81y + 16)
c
7
(y 1)
2
(y
3
2y
2
3y 1)(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
· ((y
19
+ 8y
18
+ ··· 16y 1)
2
)(y
26
+ 10y
25
+ ··· + 9439y + 256)
c
10
y
2
(y
3
+ 2y
2
+ 5y 1)(y
4
+ y
3
+ y
2
+ 5y + 9)
· ((y
19
3y
18
+ ··· + 37y 4)
2
)(y
26
+ 8y
24
+ ··· 21y + 4)
28