12a
1179
(K12a
1179
)
A knot diagram
1
Linearized knot diagam
4 10 8 9 12 11 3 1 2 7 6 5
Solving Sequence
5,12
6
1,9
4 2 8 3 11 7 10
c
5
c
12
c
4
c
1
c
8
c
3
c
11
c
6
c
10
c
2
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
21
20u
20
+ ··· + 2b 36, 3u
21
+ 17u
20
+ ··· + 4a 10, u
22
+ 7u
21
+ ··· + 88u + 8i
I
u
2
= h−1208412097a
5
u
5
+ 1863706926u
5
a
4
+ ··· + 88241195076a 13422878124,
6a
5
u
5
+ 4u
5
a
4
+ ··· 38a 32, u
6
u
5
+ 5u
4
4u
3
+ 6u
2
3u + 1i
I
u
3
= h−u
12
9u
10
30u
8
45u
6
29u
4
+ u
3
6u
2
+ b + 2u,
u
12
u
11
9u
10
9u
9
30u
8
30u
7
45u
6
45u
5
29u
4
28u
3
5u
2
+ a 4u + 2,
u
13
+ 10u
11
+ 38u
9
+ 68u
7
+ 57u
5
u
4
+ 18u
3
3u
2
1i
* 3 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3u
21
20u
20
+ · · · + 2b 36, 3u
21
+ 17u
20
+ · · · + 4a 10, u
22
+
7u
21
+ · · · + 88u + 8i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
9
=
3
4
u
21
17
4
u
20
+ ··· + 8u +
5
2
3
2
u
21
+ 10u
20
+ ··· +
365
2
u + 18
a
4
=
1
2
u
21
+
15
4
u
20
+ ··· +
461
4
u + 13
1
4
u
21
5
4
u
20
+ ··· 48u 6
a
2
=
3
8
u
21
+
19
8
u
20
+ ··· +
115
2
u +
13
2
1
4
u
21
+
7
4
u
20
+ ··· +
23
2
u + 1
a
8
=
5
4
u
21
31
4
u
20
+ ··· 106u
19
2
u
21
+
13
2
u
20
+ ··· +
137
2
u + 6
a
3
=
3
8
u
21
19
8
u
20
+ ···
55
2
u
5
2
1
4
u
21
7
4
u
20
+ ···
53
2
u 3
a
11
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
20
+ 6u
19
+ 32u
18
+ 116u
17
+ 363u
16
+ 934u
15
+ 2100u
14
+
4092u
13
+ 7035u
12
+ 10658u
11
+ 14285u
10
+ 16890u
9
+ 17584u
8
+ 15990u
7
+ 12628u
6
+
8526u
5
+ 4861u
4
+ 2276u
3
+ 846u
2
+ 236u + 42
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
19u
21
+ ··· 800u + 64
c
2
, c
3
, c
7
c
9
u
22
u
21
+ ··· + 6u
2
+ 1
c
4
, c
8
u
22
+ 6u
20
+ ··· u + 1
c
5
, c
6
, c
10
c
11
, c
12
u
22
7u
21
+ ··· 88u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
y
21
+ ··· 1024y + 4096
c
2
, c
3
, c
7
c
9
y
22
25y
21
+ ··· + 12y + 1
c
4
, c
8
y
22
+ 12y
21
+ ··· 7y + 1
c
5
, c
6
, c
10
c
11
, c
12
y
22
+ 29y
21
+ ··· + 32y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.214951 + 0.955332I
a = 0.39803 1.38319I
b = 0.670593 0.921685I
2.60701 2.88422I 0.19154 + 3.17334I
u = 0.214951 0.955332I
a = 0.39803 + 1.38319I
b = 0.670593 + 0.921685I
2.60701 + 2.88422I 0.19154 3.17334I
u = 0.813603 + 0.334821I
a = 0.391314 + 0.249585I
b = 0.463678 0.959425I
6.77494 + 2.66525I 5.93834 2.44908I
u = 0.813603 0.334821I
a = 0.391314 0.249585I
b = 0.463678 + 0.959425I
6.77494 2.66525I 5.93834 + 2.44908I
u = 0.722432 + 0.499538I
a = 0.667442 0.524436I
b = 0.702002 1.099620I
7.31468 7.59742I 4.88198 + 6.88559I
u = 0.722432 0.499538I
a = 0.667442 + 0.524436I
b = 0.702002 + 1.099620I
7.31468 + 7.59742I 4.88198 6.88559I
u = 0.386869 + 1.238110I
a = 0.29217 + 1.62873I
b = 0.85810 + 1.29508I
12.8000 11.4299I 6.89165 + 6.89710I
u = 0.386869 1.238110I
a = 0.29217 1.62873I
b = 0.85810 1.29508I
12.8000 + 11.4299I 6.89165 6.89710I
u = 0.518713 + 1.209380I
a = 0.749140 + 0.553517I
b = 0.141219 + 0.931028I
11.52230 1.93620I 10.29123 + 1.11937I
u = 0.518713 1.209380I
a = 0.749140 0.553517I
b = 0.141219 0.931028I
11.52230 + 1.93620I 10.29123 1.11937I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.188904 + 0.563822I
a = 0.341201 0.743824I
b = 0.487380 + 0.071622I
0.321406 1.315600I 0.42346 + 6.52764I
u = 0.188904 0.563822I
a = 0.341201 + 0.743824I
b = 0.487380 0.071622I
0.321406 + 1.315600I 0.42346 6.52764I
u = 0.03206 + 1.53855I
a = 0.320508 + 0.481993I
b = 0.440190 + 0.193391I
7.43727 1.58134I 0.15073 + 4.91907I
u = 0.03206 1.53855I
a = 0.320508 0.481993I
b = 0.440190 0.193391I
7.43727 + 1.58134I 0.15073 4.91907I
u = 0.398382 + 0.163640I
a = 1.041370 0.104922I
b = 0.526173 + 0.495850I
0.836027 0.793326I 6.74273 + 3.41727I
u = 0.398382 0.163640I
a = 1.041370 + 0.104922I
b = 0.526173 0.495850I
0.836027 + 0.793326I 6.74273 3.41727I
u = 0.05207 + 1.70520I
a = 0.13197 + 1.64255I
b = 0.83496 + 1.17436I
12.05740 3.92251I 0.689774 + 0.408842I
u = 0.05207 1.70520I
a = 0.13197 1.64255I
b = 0.83496 1.17436I
12.05740 + 3.92251I 0.689774 0.408842I
u = 0.10228 + 1.79386I
a = 0.12610 1.92859I
b = 0.95775 1.44210I
15.7405 13.6253I 7.26879 + 5.92995I
u = 0.10228 1.79386I
a = 0.12610 + 1.92859I
b = 0.95775 + 1.44210I
15.7405 + 13.6253I 7.26879 5.92995I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.13386 + 1.80777I
a = 0.390730 1.046170I
b = 0.164157 0.996452I
17.1171 4.8585I 9.54317 + 2.73303I
u = 0.13386 1.80777I
a = 0.390730 + 1.046170I
b = 0.164157 + 0.996452I
17.1171 + 4.8585I 9.54317 2.73303I
7
II. I
u
2
= h−1.21 × 10
9
a
5
u
5
+ 1.86 × 10
9
a
4
u
5
+ · · · + 8.82 × 10
10
a 1.34 ×
10
10
, 6a
5
u
5
+ 4u
5
a
4
+ · · · 38a 32, u
6
u
5
+ 5u
4
4u
3
+ 6u
2
3u + 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
9
=
a
0.372194a
5
u
5
0.574026a
4
u
5
+ ··· 27.1785a + 4.13428
a
4
=
0.145773a
5
u
5
+ 2.18213a
4
u
5
+ ··· + 17.8628a 21.1907
0.312265a
5
u
5
1.60138a
4
u
5
+ ··· 34.5790a + 1.77561
a
2
=
0.206418a
5
u
5
2.57431a
4
u
5
+ ··· 10.7722a + 16.8693
0.110381a
5
u
5
0.378957a
4
u
5
+ ··· 20.5376a 6.45733
a
8
=
0.132970a
5
u
5
+ 1.05447a
4
u
5
+ ··· + 1.43345a 5.94094
0.505164a
5
u
5
+ 0.480448a
4
u
5
+ ··· 26.7451a 1.80666
a
3
=
0.0660601a
5
u
5
+ 1.04617a
4
u
5
+ ··· + 12.8011a 4.58028
0.295252a
5
u
5
+ 0.333319a
4
u
5
+ ··· + 13.4971a + 1.63976
a
11
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
10836912
649345301
a
5
u
5
+
6217485248
649345301
u
5
a
4
+ ···+
27178566568
649345301
a
51617037366
649345301
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
12
c
2
, c
3
, c
7
c
9
u
36
+ u
35
+ ··· 334u + 77
c
4
, c
8
u
36
+ 3u
35
+ ··· + 244u + 271
c
5
, c
6
, c
10
c
11
, c
12
(u
6
+ u
5
+ 5u
4
+ 4u
3
+ 6u
2
+ 3u + 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
y
2
+ 2y 1)
12
c
2
, c
3
, c
7
c
9
y
36
33y
35
+ ··· + 209380y + 5929
c
4
, c
8
y
36
+ 11y
35
+ ··· + 1542616y + 73441
c
5
, c
6
, c
10
c
11
, c
12
(y
6
+ 9y
5
+ 29y
4
+ 40y
3
+ 22y
2
+ 3y + 1)
6
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.142924 + 1.159520I
a = 0.020396 0.755302I
b = 0.624535 0.897322I
6.55350 0.17216I 6.07139 0.41864I
u = 0.142924 + 1.159520I
a = 0.90019 + 1.20470I
b = 0.072498 + 0.768105I
6.55350 0.17216I 6.07139 0.41864I
u = 0.142924 + 1.159520I
a = 1.09844 + 1.21563I
b = 1.70363 + 1.17475I
10.69110 + 2.65597I 12.60066 3.39809I
u = 0.142924 + 1.159520I
a = 0.71837 1.49821I
b = 0.702328 0.883472I
6.55350 + 5.48409I 6.07139 6.37753I
u = 0.142924 + 1.159520I
a = 0.09177 + 2.06359I
b = 0.91585 + 1.55946I
6.55350 + 5.48409I 6.07139 6.37753I
u = 0.142924 + 1.159520I
a = 0.85867 + 2.27785I
b = 0.039086 + 0.707567I
10.69110 + 2.65597I 12.60066 3.39809I
u = 0.142924 1.159520I
a = 0.020396 + 0.755302I
b = 0.624535 + 0.897322I
6.55350 + 0.17216I 6.07139 + 0.41864I
u = 0.142924 1.159520I
a = 0.90019 1.20470I
b = 0.072498 0.768105I
6.55350 + 0.17216I 6.07139 + 0.41864I
u = 0.142924 1.159520I
a = 1.09844 1.21563I
b = 1.70363 1.17475I
10.69110 2.65597I 12.60066 + 3.39809I
u = 0.142924 1.159520I
a = 0.71837 + 1.49821I
b = 0.702328 + 0.883472I
6.55350 5.48409I 6.07139 + 6.37753I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.142924 1.159520I
a = 0.09177 2.06359I
b = 0.91585 1.55946I
6.55350 5.48409I 6.07139 + 6.37753I
u = 0.142924 1.159520I
a = 0.85867 2.27785I
b = 0.039086 0.707567I
10.69110 2.65597I 12.60066 + 3.39809I
u = 0.321608 + 0.359079I
a = 0.541913 0.991237I
b = 1.134260 0.815115I
5.79017 + 1.10871I 7.48336 6.18117I
u = 0.321608 + 0.359079I
a = 0.573836 1.111540I
b = 0.036630 + 0.730558I
1.65258 1.71942I 0.95409 3.20172I
u = 0.321608 + 0.359079I
a = 1.120820 0.796180I
b = 0.727819 1.151300I
1.65258 + 3.93683I 0.95409 9.16062I
u = 0.321608 + 0.359079I
a = 1.56692 + 0.28239I
b = 0.488689 0.785333I
1.65258 1.71942I 0.95409 3.20172I
u = 0.321608 + 0.359079I
a = 2.31941 + 0.30926I
b = 0.467021 + 0.778019I
1.65258 + 3.93683I 0.95409 9.16062I
u = 0.321608 + 0.359079I
a = 0.16556 3.53944I
b = 0.475830 0.658521I
5.79017 + 1.10871I 7.48336 6.18117I
u = 0.321608 0.359079I
a = 0.541913 + 0.991237I
b = 1.134260 + 0.815115I
5.79017 1.10871I 7.48336 + 6.18117I
u = 0.321608 0.359079I
a = 0.573836 + 1.111540I
b = 0.036630 0.730558I
1.65258 + 1.71942I 0.95409 + 3.20172I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.321608 0.359079I
a = 1.120820 + 0.796180I
b = 0.727819 + 1.151300I
1.65258 3.93683I 0.95409 + 9.16062I
u = 0.321608 0.359079I
a = 1.56692 0.28239I
b = 0.488689 + 0.785333I
1.65258 + 1.71942I 0.95409 + 3.20172I
u = 0.321608 0.359079I
a = 2.31941 0.30926I
b = 0.467021 0.778019I
1.65258 3.93683I 0.95409 + 9.16062I
u = 0.321608 0.359079I
a = 0.16556 + 3.53944I
b = 0.475830 + 0.658521I
5.79017 1.10871I 7.48336 + 6.18117I
u = 0.03547 + 1.77530I
a = 0.483101 + 1.162360I
b = 0.98695 + 1.09529I
17.2652 + 0.5991I 6.44525 + 0.72721I
u = 0.03547 + 1.77530I
a = 0.49089 1.43550I
b = 0.136931 0.892105I
17.2652 + 0.5991I 6.44525 + 0.72721I
u = 0.03547 + 1.77530I
a = 0.19050 + 1.53203I
b = 0.836637 + 0.957299I
17.2652 + 6.2553I 6.44525 5.23168I
u = 0.03547 + 1.77530I
a = 0.63078 1.91690I
b = 0.159090 0.769263I
18.0757 + 3.4272I 12.97451 2.25224I
u = 0.03547 + 1.77530I
a = 1.57803 1.54119I
b = 2.00938 1.44296I
18.0757 + 3.4272I 12.97451 2.25224I
u = 0.03547 + 1.77530I
a = 0.50833 2.26340I
b = 1.05676 1.80309I
17.2652 + 6.2553I 6.44525 5.23168I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.03547 1.77530I
a = 0.483101 1.162360I
b = 0.98695 1.09529I
17.2652 0.5991I 6.44525 0.72721I
u = 0.03547 1.77530I
a = 0.49089 + 1.43550I
b = 0.136931 + 0.892105I
17.2652 0.5991I 6.44525 0.72721I
u = 0.03547 1.77530I
a = 0.19050 1.53203I
b = 0.836637 0.957299I
17.2652 6.2553I 6.44525 + 5.23168I
u = 0.03547 1.77530I
a = 0.63078 + 1.91690I
b = 0.159090 + 0.769263I
18.0757 3.4272I 12.97451 + 2.25224I
u = 0.03547 1.77530I
a = 1.57803 + 1.54119I
b = 2.00938 + 1.44296I
18.0757 3.4272I 12.97451 + 2.25224I
u = 0.03547 1.77530I
a = 0.50833 + 2.26340I
b = 1.05676 + 1.80309I
17.2652 6.2553I 6.44525 + 5.23168I
14
III. I
u
3
=
h−u
12
9u
10
+· · ·+b +2u, u
12
u
11
+· · ·+a +2, u
13
+10u
11
+· · ·3u
2
1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
9
=
u
12
+ u
11
+ ··· + 4u 2
u
12
+ 9u
10
+ 30u
8
+ 45u
6
+ 29u
4
u
3
+ 6u
2
2u
a
4
=
u
12
10u
10
+ ··· + 5u + 2
u
9
+ 7u
7
+ 16u
5
+ 13u
3
+ 2u 1
a
2
=
u
12
10u
10
+ ··· 3u + 2
u
9
u
8
+ 7u
7
6u
6
+ 16u
5
11u
4
+ 13u
3
6u
2
+ 3u 1
a
8
=
u
12
+ 9u
10
+ ··· + 4u 1
u
12
u
11
+ ··· 2u + 1
a
3
=
u
12
10u
10
38u
8
67u
6
u
5
52u
4
3u
3
11u
2
u + 2
u
8
+ u
7
6u
6
+ 5u
5
11u
4
+ 7u
3
6u
2
+ 2u 1
a
11
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
10
=
u
3
2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
11
+ u
10
11u
9
+ 11u
8
44u
7
+ 40u
6
77u
5
+ 57u
4
55u
3
+ 28u
2
10u 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
4u
12
+ 8u
11
8u
10
+ u
9
+ 7u
8
5u
7
3u
6
+ 3u
5
+ 4u
4
4u
3
+ 1
c
2
, c
7
u
13
+ u
12
+ ··· + u + 1
c
3
, c
9
u
13
u
12
+ ··· + u 1
c
4
, c
8
u
13
+ 2u
11
u
10
+ 5u
9
u
8
+ 3u
7
+ 3u
5
+ u
4
+ u
3
2u
2
1
c
5
, c
6
u
13
+ 10u
11
+ 38u
9
+ 68u
7
+ 57u
5
u
4
+ 18u
3
3u
2
1
c
10
, c
11
, c
12
u
13
+ 10u
11
+ 38u
9
+ 68u
7
+ 57u
5
+ u
4
+ 18u
3
+ 3u
2
+ 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 2y
11
+ ··· 8y
2
1
c
2
, c
3
, c
7
c
9
y
13
13y
12
+ ··· + 9y 1
c
4
, c
8
y
13
+ 4y
12
+ ··· 4y 1
c
5
, c
6
, c
10
c
11
, c
12
y
13
+ 20y
12
+ ··· 6y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.222851 + 1.128390I
a = 0.528316 + 1.119370I
b = 0.751183 + 0.409643I
9.46673 + 2.12086I 5.40296 0.71019I
u = 0.222851 1.128390I
a = 0.528316 1.119370I
b = 0.751183 0.409643I
9.46673 2.12086I 5.40296 + 0.71019I
u = 0.132288 + 0.825196I
a = 0.80812 1.63198I
b = 0.620126 1.109460I
3.74892 3.58419I 7.53140 + 5.11211I
u = 0.132288 0.825196I
a = 0.80812 + 1.63198I
b = 0.620126 + 1.109460I
3.74892 + 3.58419I 7.53140 5.11211I
u = 0.09053 + 1.45630I
a = 0.446564 + 0.617287I
b = 0.003852 + 0.647453I
8.20019 + 1.37133I 10.62804 1.83848I
u = 0.09053 1.45630I
a = 0.446564 0.617287I
b = 0.003852 0.647453I
8.20019 1.37133I 10.62804 + 1.83848I
u = 0.192457 + 0.338010I
a = 1.90707 + 0.93123I
b = 0.308277 0.891137I
2.11472 + 2.48894I 7.57750 5.29863I
u = 0.192457 0.338010I
a = 1.90707 0.93123I
b = 0.308277 + 0.891137I
2.11472 2.48894I 7.57750 + 5.29863I
u = 0.374429
a = 2.73808
b = 0.745922
5.68479 6.08470
u = 0.03925 + 1.68347I
a = 0.05381 + 1.74327I
b = 0.82116 + 1.27338I
12.70200 4.26962I 9.64995 + 5.18333I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.03925 1.68347I
a = 0.05381 1.74327I
b = 0.82116 1.27338I
12.70200 + 4.26962I 9.64995 5.18333I
u = 0.04446 + 1.77839I
a = 0.481712 1.244350I
b = 0.883684 0.737401I
19.3357 + 3.2097I 5.16777 0.81655I
u = 0.04446 1.77839I
a = 0.481712 + 1.244350I
b = 0.883684 + 0.737401I
19.3357 3.2097I 5.16777 + 0.81655I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
12
· (u
13
4u
12
+ 8u
11
8u
10
+ u
9
+ 7u
8
5u
7
3u
6
+ 3u
5
+ 4u
4
4u
3
+ 1)
· (u
22
19u
21
+ ··· 800u + 64)
c
2
, c
7
(u
13
+ u
12
+ ··· + u + 1)(u
22
u
21
+ ··· + 6u
2
+ 1)
· (u
36
+ u
35
+ ··· 334u + 77)
c
3
, c
9
(u
13
u
12
+ ··· + u 1)(u
22
u
21
+ ··· + 6u
2
+ 1)
· (u
36
+ u
35
+ ··· 334u + 77)
c
4
, c
8
(u
13
+ 2u
11
u
10
+ 5u
9
u
8
+ 3u
7
+ 3u
5
+ u
4
+ u
3
2u
2
1)
· (u
22
+ 6u
20
+ ··· u + 1)(u
36
+ 3u
35
+ ··· + 244u + 271)
c
5
, c
6
(u
6
+ u
5
+ 5u
4
+ 4u
3
+ 6u
2
+ 3u + 1)
6
· (u
13
+ 10u
11
+ 38u
9
+ 68u
7
+ 57u
5
u
4
+ 18u
3
3u
2
1)
· (u
22
7u
21
+ ··· 88u + 8)
c
10
, c
11
, c
12
(u
6
+ u
5
+ 5u
4
+ 4u
3
+ 6u
2
+ 3u + 1)
6
· (u
13
+ 10u
11
+ 38u
9
+ 68u
7
+ 57u
5
+ u
4
+ 18u
3
+ 3u
2
+ 1)
· (u
22
7u
21
+ ··· 88u + 8)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
3
y
2
+ 2y 1)
12
)(y
13
+ 2y
11
+ ··· 8y
2
1)
· (y
22
y
21
+ ··· 1024y + 4096)
c
2
, c
3
, c
7
c
9
(y
13
13y
12
+ ··· + 9y 1)(y
22
25y
21
+ ··· + 12y + 1)
· (y
36
33y
35
+ ··· + 209380y + 5929)
c
4
, c
8
(y
13
+ 4y
12
+ ··· 4y 1)(y
22
+ 12y
21
+ ··· 7y + 1)
· (y
36
+ 11y
35
+ ··· + 1542616y + 73441)
c
5
, c
6
, c
10
c
11
, c
12
(y
6
+ 9y
5
+ 29y
4
+ 40y
3
+ 22y
2
+ 3y + 1)
6
· (y
13
+ 20y
12
+ ··· 6y 1)(y
22
+ 29y
21
+ ··· + 32y + 64)
21