8
5
(K8a
13
)
A knot diagram
1
Linearized knot diagam
4 5 7 2 8 1 3 6
Solving Sequence
1,4
2
5,7
3 6 8
c
1
c
4
c
3
c
6
c
8
c
2
, c
5
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, u
4
+ u
3
2u
2
+ a 2u, u
5
+ u
4
3u
3
2u
2
+ 2u 1i
I
u
2
= h−u
5
+ 2u
3
u
2
+ b u + 1, u
4
+ u
2
+ a u + 1, u
6
+ u
5
2u
4
+ 2u
2
2u 1i
I
u
3
= hb + 1, a, u 1i
* 3 irreducible components of dim
C
= 0, with total 12 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb + u, u
4
+ u
3
2u
2
+ a 2u, u
5
+ u
4
3u
3
2u
2
+ 2u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
u
4
u
3
+ 2u
2
+ 2u
u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
4
u
3
+ 2u
2
+ u
u
a
8
=
u
3
u
2
+ 2u
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
6u
3
+ 4u
2
+ 14u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
u
5
u
4
3u
3
+ 2u
2
+ 2u + 1
c
3
, c
7
u
5
3u
4
+ 6u
3
7u
2
+ 4u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
y
5
7y
4
+ 17y
3
14y
2
1
c
3
, c
7
y
5
+ 3y
4
+ 2y
3
13y
2
12y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.331409 + 0.386277I
a = 0.76001 + 1.23514I
b = 0.331409 0.386277I
0.373181 1.138820I 4.71808 + 6.05450I
u = 0.331409 0.386277I
a = 0.76001 1.23514I
b = 0.331409 + 0.386277I
0.373181 + 1.138820I 4.71808 6.05450I
u = 1.49784
a = 0.911163
b = 1.49784
8.51482 10.2860
u = 1.58033 + 0.28256I
a = 0.195567 + 1.002700I
b = 1.58033 0.28256I
13.4637 + 6.9972I 11.13904 3.54683I
u = 1.58033 0.28256I
a = 0.195567 1.002700I
b = 1.58033 + 0.28256I
13.4637 6.9972I 11.13904 + 3.54683I
5
II.
I
u
2
= h−u
5
+2u
3
u
2
+bu+1, u
4
+u
2
+au+1, u
6
+u
5
2u
4
+2u
2
2u1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
7
=
u
4
u
2
+ u 1
u
5
2u
3
+ u
2
+ u 1
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
+ u
4
2u
3
+ 2u 2
u
5
2u
3
+ u
2
+ u 1
a
8
=
u
5
2u
3
+ 2u
2
+ u 2
u
5
u
3
+ 2u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 8u
3
4u
2
2
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
u
6
u
5
2u
4
+ 2u
2
+ 2u 1
c
3
, c
7
(u
3
+ u
2
+ 2u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
y
6
5y
5
+ 8y
4
6y
3
+ 8y
2
8y + 1
c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.592989 + 0.847544I
a = 0.916215 0.894804I
b = 1.47043 + 0.10268I
6.31400 2.82812I 9.50976 + 2.97945I
u = 0.592989 0.847544I
a = 0.916215 + 0.894804I
b = 1.47043 0.10268I
6.31400 + 2.82812I 9.50976 2.97945I
u = 1.13416
a = 0.502436
b = 0.379278
2.17641 2.98050
u = 1.47043 + 0.10268I
a = 0.083785 0.894804I
b = 0.592989 + 0.847544I
6.31400 + 2.82812I 9.50976 2.97945I
u = 1.47043 0.10268I
a = 0.083785 + 0.894804I
b = 0.592989 0.847544I
6.31400 2.82812I 9.50976 + 2.97945I
u = 0.379278
a = 1.50244
b = 1.13416
2.17641 2.98050
9
III. I
u
3
= hb + 1, a, u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
7
=
0
1
a
3
=
0
1
a
6
=
1
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
u 1
c
3
, c
7
u
c
4
, c
8
u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
y 1
c
3
, c
7
y
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
13
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(u 1)(u
5
u
4
+ ··· + 2u + 1)(u
6
u
5
+ ··· + 2u 1)
c
3
, c
7
u(u
3
+ u
2
+ 2u + 1)
2
(u
5
3u
4
+ 6u
3
7u
2
+ 4u 2)
c
4
, c
8
(u + 1)(u
5
u
4
+ ··· + 2u + 1)(u
6
u
5
+ ··· + 2u 1)
14
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
(y 1)(y
5
7y
4
+ ··· 14y
2
1)(y
6
5y
5
+ ··· 8y + 1)
c
3
, c
7
y(y
3
+ 3y
2
+ 2y 1)
2
(y
5
+ 3y
4
+ 2y
3
13y
2
12y 4)
15