12a
1199
(K12a
1199
)
A knot diagram
1
Linearized knot diagam
4 10 12 9 2 11 3 1 5 6 7 8
Solving Sequence
6,10
11
3,7
8 12 2 5 9 4 1
c
10
c
6
c
7
c
11
c
2
c
5
c
9
c
4
c
1
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1107u
29
7807u
28
+ ··· + 74b 1824, 609u
29
+ 5328u
28
+ ··· + 74a + 3095,
u
30
+ 9u
29
+ ··· 18u + 4i
I
u
2
= h−2.24569 × 10
16
u
41
+ 3.59238 × 10
16
u
40
+ ··· + 1.87613 × 10
15
b + 8.64633 × 10
15
,
8.64633 × 10
15
au
41
+ 5.57822 × 10
15
u
41
+ ··· + 1.84596 × 10
16
a 3.64956 × 10
16
,
u
42
3u
41
+ ··· 3u + 1i
I
u
3
= h5u
9
+ 2u
8
24u
7
+ 3u
6
+ 49u
5
23u
4
46u
3
+ 15u
2
+ b 4,
5u
9
+ u
8
24u
7
+ 7u
6
+ 47u
5
29u
4
41u
3
+ 18u
2
+ a u 1,
u
10
+ 2u
9
4u
8
7u
7
+ 10u
6
+ 11u
5
15u
4
12u
3
+ 3u
2
u 1i
I
u
4
= h−u
2
a + au + b u + 1, u
5
a + u
4
a u
5
+ 3u
3
a 3u
2
a + 3u
3
+ a
2
au u + 1,
u
6
u
5
3u
4
+ 3u
3
+ u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 136 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1107u
29
7807u
28
+ · · · + 74b 1824, 609u
29
+ 5328u
28
+ · · · +
74a + 3095, u
30
+ 9u
29
+ · · · 18u + 4i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
8.22973u
29
72u
28
+ ··· + 207.662u 41.8243
14.9595u
29
+ 105.500u
28
+ ··· 119.824u + 24.6486
a
7
=
u
u
3
+ u
a
8
=
23.4797u
29
+ 179.250u
28
+ ··· 322.412u + 67.3243
10.0405u
29
+ 78.5000u
28
+ ··· 180.176u + 34.3514
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
23.1892u
29
177.500u
28
+ ··· + 327.486u 66.4730
14.9595u
29
+ 105.500u
28
+ ··· 119.824u + 24.6486
a
5
=
0.695946u
29
4.25000u
28
+ ··· + 11.6824u + 3.13514
20.2027u
29
149.500u
28
+ ··· + 275.878u 53.7568
a
9
=
3.44595u
29
+ 25u
28
+ ··· 32.9324u + 14.3649
2.47297u
29
15.5000u
28
+ ··· + 19.7162u 4.43243
a
4
=
13.4865u
29
+ 101.500u
28
+ ··· 177.108u + 30.7162
22.4459u
29
164.500u
28
+ ··· + 266.932u 52.8649
a
1
=
52.9459u
29
399.500u
28
+ ··· + 713.432u 146.365
14.0135u
29
110.500u
28
+ ··· + 252.392u 47.7838
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2517
37
u
29
485u
28
+ ··· +
30702
37
u
5978
37
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
21u
29
+ ··· + 5664u 576
c
2
, c
7
u
30
+ u
29
+ ··· + 3u + 1
c
3
, c
5
u
30
2u
29
+ ··· 3u 1
c
4
, c
8
, c
9
c
12
u
30
u
29
+ ··· 2u 1
c
6
, c
10
, c
11
u
30
9u
29
+ ··· + 18u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ y
29
+ ··· + 625536y + 331776
c
2
, c
7
y
30
11y
29
+ ··· 35y + 1
c
3
, c
5
y
30
6y
29
+ ··· 35y + 1
c
4
, c
8
, c
9
c
12
y
30
31y
29
+ ··· 38y + 1
c
6
, c
10
, c
11
y
30
31y
29
+ ··· 380y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.410944 + 0.926981I
a = 0.213674 0.522235I
b = 0.822263 + 0.506816I
7.92023 + 8.26844I 5.79297 6.61407I
u = 0.410944 0.926981I
a = 0.213674 + 0.522235I
b = 0.822263 0.506816I
7.92023 8.26844I 5.79297 + 6.61407I
u = 0.657234 + 0.795413I
a = 0.286158 + 0.703110I
b = 1.16376 + 0.84778I
7.1697 13.8650I 3.50716 + 9.23776I
u = 0.657234 0.795413I
a = 0.286158 0.703110I
b = 1.16376 0.84778I
7.1697 + 13.8650I 3.50716 9.23776I
u = 0.732455 + 0.792176I
a = 0.171279 0.350284I
b = 0.574121 0.559120I
2.28093 3.33714I 4.29262 + 9.83023I
u = 0.732455 0.792176I
a = 0.171279 + 0.350284I
b = 0.574121 + 0.559120I
2.28093 + 3.33714I 4.29262 9.83023I
u = 1.192540 + 0.100004I
a = 0.823536 + 0.923814I
b = 0.308812 + 0.088803I
3.52040 + 2.10334I 2.60337 1.43319I
u = 1.192540 0.100004I
a = 0.823536 0.923814I
b = 0.308812 0.088803I
3.52040 2.10334I 2.60337 + 1.43319I
u = 0.565305 + 0.498449I
a = 0.152381 1.331500I
b = 1.31707 1.00922I
7.03863 3.47674I 6.16302 + 6.46879I
u = 0.565305 0.498449I
a = 0.152381 + 1.331500I
b = 1.31707 + 1.00922I
7.03863 + 3.47674I 6.16302 6.46879I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39387
a = 0.516557
b = 1.72362
3.76346 2.09680
u = 0.285170 + 0.476222I
a = 0.543085 + 0.598691I
b = 0.371848 + 0.489775I
0.036666 1.100320I 0.47503 + 5.63568I
u = 0.285170 0.476222I
a = 0.543085 0.598691I
b = 0.371848 0.489775I
0.036666 + 1.100320I 0.47503 5.63568I
u = 0.258913 + 0.478977I
a = 0.64282 + 1.46951I
b = 1.130390 0.325482I
7.79400 + 0.09205I 8.11865 + 0.48091I
u = 0.258913 0.478977I
a = 0.64282 1.46951I
b = 1.130390 + 0.325482I
7.79400 0.09205I 8.11865 0.48091I
u = 1.46966 + 0.13793I
a = 0.01513 + 1.70633I
b = 0.446291 + 1.149380I
5.80438 + 3.26443I 0
u = 1.46966 0.13793I
a = 0.01513 1.70633I
b = 0.446291 1.149380I
5.80438 3.26443I 0
u = 1.51744
a = 0.334350
b = 1.27724
8.85903 14.0970
u = 1.52403
a = 0.187267
b = 0.720364
4.39987 0
u = 1.31833 + 0.78111I
a = 0.087798 0.207422I
b = 0.248448 + 0.151750I
2.43027 2.71202I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.31833 0.78111I
a = 0.087798 + 0.207422I
b = 0.248448 0.151750I
2.43027 + 2.71202I 0
u = 1.54699 + 0.14661I
a = 0.77311 2.25751I
b = 1.33063 1.62440I
0.01415 + 5.81789I 0
u = 1.54699 0.14661I
a = 0.77311 + 2.25751I
b = 1.33063 + 1.62440I
0.01415 5.81789I 0
u = 0.423303
a = 2.12564
b = 0.518907
2.26077 15.8440
u = 1.58801 + 0.25775I
a = 0.131982 1.342510I
b = 0.867432 1.090380I
9.82577 + 7.23018I 0
u = 1.58801 0.25775I
a = 0.131982 + 1.342510I
b = 0.867432 + 1.090380I
9.82577 7.23018I 0
u = 1.58710 + 0.27028I
a = 0.42992 + 1.68609I
b = 1.36000 + 1.19527I
0.2004 + 17.8372I 0
u = 1.58710 0.27028I
a = 0.42992 1.68609I
b = 1.36000 1.19527I
0.2004 17.8372I 0
u = 1.65285
a = 1.19651
b = 1.29111
0.937751 0
u = 0.226022
a = 5.08409
b = 1.40884
8.14855 10.8180
7
II. I
u
2
= h−2.25 × 10
16
u
41
+ 3.59 × 10
16
u
40
+ · · · + 1.88 × 10
15
b + 8.65 ×
10
15
, 8.65 × 10
15
au
41
+ 5.58 × 10
15
u
41
+ · · · + 1.85 × 10
16
a 3.65 ×
10
16
, u
42
3u
41
+ · · · 3u + 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
a
11.9698u
41
19.1478u
40
+ ··· + 3.98658u 4.60860
a
7
=
u
u
3
+ u
a
8
=
11.9698au
41
1.27352u
41
+ ··· 4.60860a + 4.17129
8.91385u
41
+ 14.0830u
40
+ ··· 10.5039u + 3.92034
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
11.9698u
41
+ 19.1478u
40
+ ··· + a + 4.60860
11.9698u
41
19.1478u
40
+ ··· + 3.98658u 4.60860
a
5
=
7.67033au
41
8.03946u
41
+ ··· + 7.20165a + 7.93907
6.00468au
41
+ 7.46200u
41
+ ··· + 4.95139a 3.69228
a
9
=
4.66809au
41
+ 5.31562u
41
+ ··· + 2.79353a 9.59020
2.22390au
41
+ 10.2324u
41
+ ··· + 1.44296a 7.05505
a
4
=
17.9745u
41
+ 27.7658u
40
+ ··· + a + 9.56000
4.08623u
41
6.98101u
40
+ ··· 5.04797u 0.163919
a
1
=
4.07196au
41
+ 4.18561u
41
+ ··· 1.15846a 2.98736
3.99634au
41
+ 7.46200u
41
+ ··· 2.71991a 4.69228
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
60686684670471694
938063624650451
u
41
88213372387653101
938063624650451
u
40
+ ···+
149849712719378746
938063624650451
u
60672440054349689
938063624650451
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
42
+ 15u
41
+ ··· + 185u + 25)
2
c
2
, c
7
u
84
+ 2u
83
+ ··· + 7u 1
c
3
, c
5
u
84
5u
82
+ ··· + 1628u 151
c
4
, c
8
, c
9
c
12
u
84
+ u
83
+ ··· + 13u 7
c
6
, c
10
, c
11
(u
42
+ 3u
41
+ ··· + 3u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
42
+ 19y
41
+ ··· + 10575y + 625)
2
c
2
, c
7
y
84
+ 16y
83
+ ··· 965y + 1
c
3
, c
5
y
84
10y
83
+ ··· 808486y + 22801
c
4
, c
8
, c
9
c
12
y
84
59y
83
+ ··· + 699y + 49
c
6
, c
10
, c
11
(y
42
45y
41
+ ··· 37y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.863764 + 0.522671I
a = 1.136370 + 0.489074I
b = 0.753370 0.394863I
5.82176 + 1.45109I 2.57813 2.42981I
u = 0.863764 + 0.522671I
a = 0.396273 + 0.223203I
b = 1.251320 + 0.291856I
5.82176 + 1.45109I 2.57813 2.42981I
u = 0.863764 0.522671I
a = 1.136370 0.489074I
b = 0.753370 + 0.394863I
5.82176 1.45109I 2.57813 + 2.42981I
u = 0.863764 0.522671I
a = 0.396273 0.223203I
b = 1.251320 0.291856I
5.82176 1.45109I 2.57813 + 2.42981I
u = 0.607177 + 0.810150I
a = 0.494044 + 0.609480I
b = 1.002410 + 0.742946I
1.39005 + 8.17887I 0. 9.88270I
u = 0.607177 + 0.810150I
a = 0.187223 0.462069I
b = 0.702247 0.821575I
1.39005 + 8.17887I 0. 9.88270I
u = 0.607177 0.810150I
a = 0.494044 0.609480I
b = 1.002410 0.742946I
1.39005 8.17887I 0. + 9.88270I
u = 0.607177 0.810150I
a = 0.187223 + 0.462069I
b = 0.702247 + 0.821575I
1.39005 8.17887I 0. + 9.88270I
u = 0.566268 + 0.921130I
a = 0.374671 + 0.124812I
b = 0.174252 0.314893I
1.65272 2.50366I 6.09925 + 11.01891I
u = 0.566268 + 0.921130I
a = 0.005360 0.259215I
b = 0.594720 + 0.416855I
1.65272 2.50366I 6.09925 + 11.01891I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.566268 0.921130I
a = 0.374671 0.124812I
b = 0.174252 + 0.314893I
1.65272 + 2.50366I 6.09925 11.01891I
u = 0.566268 0.921130I
a = 0.005360 + 0.259215I
b = 0.594720 0.416855I
1.65272 + 2.50366I 6.09925 11.01891I
u = 0.141252 + 0.807812I
a = 1.122350 0.174833I
b = 0.728441 + 0.456399I
1.84859 0.65986I 1.04077 3.49741I
u = 0.141252 + 0.807812I
a = 0.0954544 + 0.0888990I
b = 0.219094 + 0.847500I
1.84859 0.65986I 1.04077 3.49741I
u = 0.141252 0.807812I
a = 1.122350 + 0.174833I
b = 0.728441 0.456399I
1.84859 + 0.65986I 1.04077 + 3.49741I
u = 0.141252 0.807812I
a = 0.0954544 0.0888990I
b = 0.219094 0.847500I
1.84859 + 0.65986I 1.04077 + 3.49741I
u = 0.605442 + 0.415115I
a = 1.045290 + 0.709146I
b = 0.748270 0.387756I
2.93139 0.78383I 4.56702 3.86421I
u = 0.605442 + 0.415115I
a = 0.212152 0.145332I
b = 1.041500 + 0.082980I
2.93139 0.78383I 4.56702 3.86421I
u = 0.605442 0.415115I
a = 1.045290 0.709146I
b = 0.748270 + 0.387756I
2.93139 + 0.78383I 4.56702 + 3.86421I
u = 0.605442 0.415115I
a = 0.212152 + 0.145332I
b = 1.041500 0.082980I
2.93139 + 0.78383I 4.56702 + 3.86421I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.258937 + 0.664390I
a = 0.342925 0.085855I
b = 1.16644 0.86498I
7.59159 5.61854I 7.27003 + 5.73638I
u = 0.258937 + 0.664390I
a = 0.50447 1.71458I
b = 0.747037 + 0.218239I
7.59159 5.61854I 7.27003 + 5.73638I
u = 0.258937 0.664390I
a = 0.342925 + 0.085855I
b = 1.16644 + 0.86498I
7.59159 + 5.61854I 7.27003 5.73638I
u = 0.258937 0.664390I
a = 0.50447 + 1.71458I
b = 0.747037 0.218239I
7.59159 + 5.61854I 7.27003 5.73638I
u = 0.411667 + 0.530873I
a = 0.623616 0.694387I
b = 1.105310 0.878796I
3.49440 + 4.19968I 4.41465 6.29777I
u = 0.411667 + 0.530873I
a = 0.13742 + 1.48491I
b = 0.776383 + 0.510140I
3.49440 + 4.19968I 4.41465 6.29777I
u = 0.411667 0.530873I
a = 0.623616 + 0.694387I
b = 1.105310 + 0.878796I
3.49440 4.19968I 4.41465 + 6.29777I
u = 0.411667 0.530873I
a = 0.13742 1.48491I
b = 0.776383 0.510140I
3.49440 4.19968I 4.41465 + 6.29777I
u = 1.325230 + 0.121163I
a = 0.33845 1.40772I
b = 0.0717567 0.0317378I
1.60110 2.37215I 0
u = 1.325230 + 0.121163I
a = 0.32948 + 1.87790I
b = 0.30721 + 1.46972I
1.60110 2.37215I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.325230 0.121163I
a = 0.33845 + 1.40772I
b = 0.0717567 + 0.0317378I
1.60110 + 2.37215I 0
u = 1.325230 0.121163I
a = 0.32948 1.87790I
b = 0.30721 1.46972I
1.60110 + 2.37215I 0
u = 0.565388 + 0.238251I
a = 0.387349 + 0.361291I
b = 0.316356 + 0.976830I
0.30835 2.48253I 3.85775 + 6.40077I
u = 0.565388 + 0.238251I
a = 1.39851 + 1.15497I
b = 0.248572 + 0.792395I
0.30835 2.48253I 3.85775 + 6.40077I
u = 0.565388 0.238251I
a = 0.387349 0.361291I
b = 0.316356 0.976830I
0.30835 + 2.48253I 3.85775 6.40077I
u = 0.565388 0.238251I
a = 1.39851 1.15497I
b = 0.248572 0.792395I
0.30835 + 2.48253I 3.85775 6.40077I
u = 1.41609 + 0.17675I
a = 0.36241 1.44279I
b = 0.160821 0.085750I
2.26163 + 8.51393I 0
u = 1.41609 + 0.17675I
a = 0.66383 1.90549I
b = 1.49610 1.45020I
2.26163 + 8.51393I 0
u = 1.41609 0.17675I
a = 0.36241 + 1.44279I
b = 0.160821 + 0.085750I
2.26163 8.51393I 0
u = 1.41609 0.17675I
a = 0.66383 + 1.90549I
b = 1.49610 + 1.45020I
2.26163 8.51393I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.45653 + 0.03615I
a = 0.26001 1.51590I
b = 1.025060 0.747723I
4.04142 + 2.69160I 0
u = 1.45653 + 0.03615I
a = 1.01452 1.68684I
b = 1.64938 1.46587I
4.04142 + 2.69160I 0
u = 1.45653 0.03615I
a = 0.26001 + 1.51590I
b = 1.025060 + 0.747723I
4.04142 2.69160I 0
u = 1.45653 0.03615I
a = 1.01452 + 1.68684I
b = 1.64938 + 1.46587I
4.04142 2.69160I 0
u = 1.49131 + 0.14297I
a = 0.31406 + 1.83068I
b = 0.379398 + 1.070490I
2.77120 6.54818I 0
u = 1.49131 + 0.14297I
a = 0.54619 1.94977I
b = 1.30490 1.37833I
2.77120 6.54818I 0
u = 1.49131 0.14297I
a = 0.31406 1.83068I
b = 0.379398 1.070490I
2.77120 + 6.54818I 0
u = 1.49131 0.14297I
a = 0.54619 + 1.94977I
b = 1.30490 + 1.37833I
2.77120 + 6.54818I 0
u = 1.49885
a = 0.311540 + 0.980370I
b = 1.166850 + 0.733030I
8.66282 0
u = 1.49885
a = 0.311540 0.980370I
b = 1.166850 0.733030I
8.66282 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.50805 + 0.06162I
a = 0.15996 + 1.54499I
b = 0.652969 + 1.020330I
7.08373 + 3.55162I 0
u = 1.50805 + 0.06162I
a = 0.55068 + 1.64664I
b = 0.79820 + 1.50112I
7.08373 + 3.55162I 0
u = 1.50805 0.06162I
a = 0.15996 1.54499I
b = 0.652969 1.020330I
7.08373 3.55162I 0
u = 1.50805 0.06162I
a = 0.55068 1.64664I
b = 0.79820 1.50112I
7.08373 3.55162I 0
u = 1.51088
a = 0.184782 + 0.402102I
b = 0.700993 + 0.310371I
4.39160 0
u = 1.51088
a = 0.184782 0.402102I
b = 0.700993 0.310371I
4.39160 0
u = 0.464315 + 0.152179I
a = 0.826498 + 1.010610I
b = 0.02611 + 1.65946I
4.22300 + 6.38749I 2.86967 7.52420I
u = 0.464315 + 0.152179I
a = 1.64608 2.86720I
b = 0.625983 1.127820I
4.22300 + 6.38749I 2.86967 7.52420I
u = 0.464315 0.152179I
a = 0.826498 1.010610I
b = 0.02611 1.65946I
4.22300 6.38749I 2.86967 + 7.52420I
u = 0.464315 0.152179I
a = 1.64608 + 2.86720I
b = 0.625983 + 1.127820I
4.22300 6.38749I 2.86967 + 7.52420I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.51736 + 0.06881I
a = 0.12838 2.16534I
b = 0.93134 1.30155I
2.46728 7.30353I 0
u = 1.51736 + 0.06881I
a = 0.22992 + 2.39296I
b = 0.37237 + 2.26942I
2.46728 7.30353I 0
u = 1.51736 0.06881I
a = 0.12838 + 2.16534I
b = 0.93134 + 1.30155I
2.46728 + 7.30353I 0
u = 1.51736 0.06881I
a = 0.22992 2.39296I
b = 0.37237 2.26942I
2.46728 + 7.30353I 0
u = 1.48180 + 0.33629I
a = 0.133886 + 1.152100I
b = 1.104390 + 0.677706I
3.51695 + 5.02150I 0
u = 1.48180 + 0.33629I
a = 0.421044 + 1.156400I
b = 0.086561 + 1.075800I
3.51695 + 5.02150I 0
u = 1.48180 0.33629I
a = 0.133886 1.152100I
b = 1.104390 0.677706I
3.51695 5.02150I 0
u = 1.48180 0.33629I
a = 0.421044 1.156400I
b = 0.086561 1.075800I
3.51695 5.02150I 0
u = 1.56729 + 0.27366I
a = 0.23094 + 1.54795I
b = 1.23064 + 1.03994I
5.72649 12.16830I 0
u = 1.56729 + 0.27366I
a = 0.13601 1.58594I
b = 0.89879 1.29737I
5.72649 12.16830I 0
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.56729 0.27366I
a = 0.23094 1.54795I
b = 1.23064 1.03994I
5.72649 + 12.16830I 0
u = 1.56729 0.27366I
a = 0.13601 + 1.58594I
b = 0.89879 + 1.29737I
5.72649 + 12.16830I 0
u = 0.407892
a = 2.08788 + 0.51861I
b = 0.504258 + 0.297819I
2.24512 11.7400
u = 0.407892
a = 2.08788 0.51861I
b = 0.504258 0.297819I
2.24512 11.7400
u = 1.61172 + 0.26088I
a = 0.151617 0.867656I
b = 0.853272 0.684710I
5.78754 1.93458I 0
u = 1.61172 + 0.26088I
a = 0.021830 + 0.861367I
b = 0.308860 + 0.801667I
5.78754 1.93458I 0
u = 1.61172 0.26088I
a = 0.151617 + 0.867656I
b = 0.853272 + 0.684710I
5.78754 + 1.93458I 0
u = 1.61172 0.26088I
a = 0.021830 0.861367I
b = 0.308860 0.801667I
5.78754 + 1.93458I 0
u = 1.63736
a = 1.18397
b = 2.01301
3.44170 0
u = 1.63736
a = 0.709156
b = 0.0373655
3.44170 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.192853 + 0.119529I
a = 1.96792 2.44007I
b = 0.92266 1.14868I
1.58994 2.14839I 5.01662 + 8.36358I
u = 0.192853 + 0.119529I
a = 6.79477 1.92552I
b = 0.604319 0.592713I
1.58994 2.14839I 5.01662 + 8.36358I
u = 0.192853 0.119529I
a = 1.96792 + 2.44007I
b = 0.92266 + 1.14868I
1.58994 + 2.14839I 5.01662 8.36358I
u = 0.192853 0.119529I
a = 6.79477 + 1.92552I
b = 0.604319 + 0.592713I
1.58994 + 2.14839I 5.01662 8.36358I
19
III.
I
u
3
= h5u
9
+ 2u
8
+ · · · + b 4, 5u
9
+ u
8
+ · · · + a 1, u
10
+ 2u
9
+ · · · u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
5u
9
u
8
+ 24u
7
7u
6
47u
5
+ 29u
4
+ 41u
3
18u
2
+ u + 1
5u
9
2u
8
+ 24u
7
3u
6
49u
5
+ 23u
4
+ 46u
3
15u
2
+ 4
a
7
=
u
u
3
+ u
a
8
=
u
9
u
8
4u
7
+ 6u
6
+ 5u
5
12u
4
u
3
+ 8u
2
2u 3
3u
9
+ u
8
13u
7
+ 2u
6
+ 24u
5
11u
4
21u
3
+ 3u
2
3u 2
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
8
4u
6
+ 2u
5
+ 6u
4
5u
3
3u
2
+ u 3
5u
9
2u
8
+ 24u
7
3u
6
49u
5
+ 23u
4
+ 46u
3
15u
2
+ 4
a
5
=
3u
9
+ 2u
8
15u
7
2u
6
+ 34u
5
8u
4
38u
3
+ 7u
2
+ 7u 4
2u
9
+ u
8
10u
7
+ u
6
+ 21u
5
11u
4
19u
3
+ 9u
2
2u 2
a
9
=
4u
9
+ 3u
8
18u
7
4u
6
+ 37u
5
5u
4
37u
3
2u
2
3u 3
3u
9
+ 2u
8
14u
7
2u
6
+ 29u
5
6u
4
29u
3
+ u
2
1
a
4
=
2u
9
+ 10u
7
5u
6
19u
5
+ 17u
4
+ 14u
3
12u
2
+ 3u 1
u
9
+ 5u
7
2u
6
10u
5
+ 7u
4
+ 9u
3
6u
2
u + 1
a
1
=
u
9
u
8
+ 3u
7
+ 4u
6
5u
5
10u
4
+ 8u
3
+ 15u
2
3u 1
3u
9
u
8
+ 14u
7
2u
6
28u
5
+ 12u
4
+ 27u
3
5u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 16u
9
14u
8
+ 72u
7
+ 28u
6
153u
5
2u
4
+ 166u
3
+ 18u
2
4u + 23
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
8u
9
+ ··· 88u + 13
c
2
, c
7
u
10
u
9
+ 4u
8
u
7
+ 5u
6
9u
5
7u
4
5u
3
+ u 1
c
3
, c
5
u
10
+ 2u
9
+ 2u
8
+ 5u
7
+ 7u
6
+ 6u
5
+ 6u
4
+ 6u
3
+ 4u
2
+ u + 1
c
4
, c
8
u
10
+ u
9
4u
8
4u
7
+ 8u
6
+ 6u
5
9u
4
3u
3
+ 6u
2
1
c
6
u
10
2u
9
4u
8
+ 7u
7
+ 10u
6
11u
5
15u
4
+ 12u
3
+ 3u
2
+ u 1
c
9
, c
12
u
10
u
9
4u
8
+ 4u
7
+ 8u
6
6u
5
9u
4
+ 3u
3
+ 6u
2
1
c
10
, c
11
u
10
+ 2u
9
4u
8
7u
7
+ 10u
6
+ 11u
5
15u
4
12u
3
+ 3u
2
u 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 12y
9
+ ··· 464y + 169
c
2
, c
7
y
10
+ 7y
9
+ 24y
8
+ 7y
7
59y
6
161y
5
47y
4
17y
3
+ 24y
2
y + 1
c
3
, c
5
y
10
2y
8
9y
7
3y
6
+ 2y
5
+ 14y
4
+ 14y
3
+ 16y
2
+ 7y + 1
c
4
, c
8
, c
9
c
12
y
10
9y
9
+ ··· 12y + 1
c
6
, c
10
, c
11
y
10
12y
9
+ ··· 7y + 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.123500 + 0.840732I
a = 0.1339860 + 0.0357723I
b = 0.322604 0.305704I
2.31865 + 2.84134I 4.4104 24.6107I
u = 1.123500 0.840732I
a = 0.1339860 0.0357723I
b = 0.322604 + 0.305704I
2.31865 2.84134I 4.4104 + 24.6107I
u = 1.45178 + 0.24453I
a = 0.156567 + 1.065310I
b = 0.402562 + 0.707908I
4.52753 + 2.30900I 1.28825 2.99143I
u = 1.45178 0.24453I
a = 0.156567 1.065310I
b = 0.402562 0.707908I
4.52753 2.30900I 1.28825 + 2.99143I
u = 1.50421 + 0.09962I
a = 0.36862 2.65968I
b = 0.80804 1.91705I
0.97937 + 7.97248I 2.33266 8.09152I
u = 1.50421 0.09962I
a = 0.36862 + 2.65968I
b = 0.80804 + 1.91705I
0.97937 7.97248I 2.33266 + 8.09152I
u = 1.51106
a = 0.361955
b = 1.37339
8.44475 5.79620
u = 0.255179 + 0.355404I
a = 1.76332 1.74462I
b = 0.59443 1.28495I
5.13832 6.43552I 7.94486 + 8.35380I
u = 0.255179 0.355404I
a = 1.76332 + 1.74462I
b = 0.59443 + 1.28495I
5.13832 + 6.43552I 7.94486 8.35380I
u = 0.356433
a = 2.79306
b = 0.640696
2.03513 20.0460
23
IV. I
u
4
=
h−u
2
a+au+bu+1, u
5
au
5
+· · ·+a
2
+1, u
6
u
5
3u
4
+3u
3
+u
2
u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
a
u
2
a au + u 1
a
7
=
u
u
3
+ u
a
8
=
au + u
2
a u
u
4
u
3
2u
2
+ 2u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
2
a + au + a u + 1
u
2
a au + u 1
a
5
=
u
5
a u
4
a 3u
3
a + u
4
+ 3u
2
a + au 2u
2
a + u 1
u
5
a + u
4
a + u
5
+ 2u
3
a u
4
2u
2
a 2u
3
+ 2u
2
a
9
=
u
5
a 2u
4
a u
5
2u
3
a + u
4
+ 5u
2
a + u
3
2u
2
a + 2u
u
3
a u
2
a au + u
2
+ a u
a
4
=
u
5
a u
4
a u
5
2u
3
a + u
4
+ u
2
a + 2u
3
+ au 2u
2
+ a u + 1
u
4
a + u
3
a + 2u
2
a u
3
2au + u
2
+ 2u 1
a
1
=
u
5
u
3
a u
4
+ u
2
a 2u
3
+ au + u
2
+ 1
u
5
+ u
2
a + 3u
3
2au u
2
+ a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
u
4
3u
3
+ u
2
u + 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
u
5
+ u
4
u
3
u
2
+ u 1)
2
c
2
, c
7
u
12
+ u
11
+ ··· 7u + 1
c
3
, c
5
u
12
5u
11
+ ··· 2u 1
c
4
, c
8
u
12
5u
10
2u
9
+ 8u
8
+ 7u
7
2u
6
5u
5
5u
4
6u
3
+ 2u
2
+ 7u + 1
c
6
(u
6
+ u
5
3u
4
3u
3
+ u
2
+ u + 1)
2
c
9
, c
12
u
12
5u
10
+ 2u
9
+ 8u
8
7u
7
2u
6
+ 5u
5
5u
4
+ 6u
3
+ 2u
2
7u + 1
c
10
, c
11
(u
6
u
5
3u
4
+ 3u
3
+ u
2
u + 1)
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ y
5
3y
4
3y
3
+ y
2
+ y + 1)
2
c
2
, c
7
y
12
3y
11
+ ··· 29y + 1
c
3
, c
5
y
12
5y
11
+ ··· 10y + 1
c
4
, c
8
, c
9
c
12
y
12
10y
11
+ ··· 45y + 1
c
6
, c
10
, c
11
(y
6
7y
5
+ 17y
4
15y
3
+ y
2
+ y + 1)
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.847445
a = 0.235955
b = 1.47803
6.86480 4.00150
u = 0.847445
a = 1.94406
b = 1.19619
6.86480 4.00150
u = 0.251489 + 0.528716I
a = 0.311088 0.168531I
b = 0.647276 + 0.689301I
1.98554 + 1.63935I 2.25076 0.08848I
u = 0.251489 + 0.528716I
a = 0.57743 + 1.71093I
b = 0.569018 0.423369I
1.98554 + 1.63935I 2.25076 0.08848I
u = 0.251489 0.528716I
a = 0.311088 + 0.168531I
b = 0.647276 0.689301I
1.98554 1.63935I 2.25076 + 0.08848I
u = 0.251489 0.528716I
a = 0.57743 1.71093I
b = 0.569018 + 0.423369I
1.98554 1.63935I 2.25076 + 0.08848I
u = 1.46321 + 0.18726I
a = 0.06132 1.65441I
b = 1.020610 0.898165I
2.65234 4.33255I 0.80689 + 2.76702I
u = 1.46321 + 0.18726I
a = 0.38891 + 1.74046I
b = 0.08531 + 1.44617I
2.65234 4.33255I 0.80689 + 2.76702I
u = 1.46321 0.18726I
a = 0.06132 + 1.65441I
b = 1.020610 + 0.898165I
2.65234 + 4.33255I 0.80689 2.76702I
u = 1.46321 0.18726I
a = 0.38891 1.74046I
b = 0.08531 1.44617I
2.65234 + 4.33255I 0.80689 2.76702I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.58196
a = 1.04686
b = 1.69397
5.53118 8.11680
u = 1.58196
a = 0.585273
b = 0.191384
5.53118 8.11680
28
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
u
5
+ u
4
u
3
u
2
+ u 1)
2
)(u
10
8u
9
+ ··· 88u + 13)
· (u
30
21u
29
+ ··· + 5664u 576)(u
42
+ 15u
41
+ ··· + 185u + 25)
2
c
2
, c
7
(u
10
u
9
+ 4u
8
u
7
+ 5u
6
9u
5
7u
4
5u
3
+ u 1)
· (u
12
+ u
11
+ ··· 7u + 1)(u
30
+ u
29
+ ··· + 3u + 1)
· (u
84
+ 2u
83
+ ··· + 7u 1)
c
3
, c
5
(u
10
+ 2u
9
+ 2u
8
+ 5u
7
+ 7u
6
+ 6u
5
+ 6u
4
+ 6u
3
+ 4u
2
+ u + 1)
· (u
12
5u
11
+ ··· 2u 1)(u
30
2u
29
+ ··· 3u 1)
· (u
84
5u
82
+ ··· + 1628u 151)
c
4
, c
8
(u
10
+ u
9
4u
8
4u
7
+ 8u
6
+ 6u
5
9u
4
3u
3
+ 6u
2
1)
· (u
12
5u
10
2u
9
+ 8u
8
+ 7u
7
2u
6
5u
5
5u
4
6u
3
+ 2u
2
+ 7u + 1)
· (u
30
u
29
+ ··· 2u 1)(u
84
+ u
83
+ ··· + 13u 7)
c
6
(u
6
+ u
5
3u
4
3u
3
+ u
2
+ u + 1)
2
· (u
10
2u
9
4u
8
+ 7u
7
+ 10u
6
11u
5
15u
4
+ 12u
3
+ 3u
2
+ u 1)
· (u
30
9u
29
+ ··· + 18u + 4)(u
42
+ 3u
41
+ ··· + 3u + 1)
2
c
9
, c
12
(u
10
u
9
4u
8
+ 4u
7
+ 8u
6
6u
5
9u
4
+ 3u
3
+ 6u
2
1)
· (u
12
5u
10
+ 2u
9
+ 8u
8
7u
7
2u
6
+ 5u
5
5u
4
+ 6u
3
+ 2u
2
7u + 1)
· (u
30
u
29
+ ··· 2u 1)(u
84
+ u
83
+ ··· + 13u 7)
c
10
, c
11
(u
6
u
5
3u
4
+ 3u
3
+ u
2
u + 1)
2
· (u
10
+ 2u
9
4u
8
7u
7
+ 10u
6
+ 11u
5
15u
4
12u
3
+ 3u
2
u 1)
· (u
30
9u
29
+ ··· + 18u + 4)(u
42
+ 3u
41
+ ··· + 3u + 1)
2
29
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
6
+ y
5
3y
4
3y
3
+ y
2
+ y + 1)
2
)(y
10
+ 12y
9
+ ··· 464y + 169)
· (y
30
+ y
29
+ ··· + 625536y + 331776)
· (y
42
+ 19y
41
+ ··· + 10575y + 625)
2
c
2
, c
7
(y
10
+ 7y
9
+ 24y
8
+ 7y
7
59y
6
161y
5
47y
4
17y
3
+ 24y
2
y + 1)
· (y
12
3y
11
+ ··· 29y + 1)(y
30
11y
29
+ ··· 35y + 1)
· (y
84
+ 16y
83
+ ··· 965y + 1)
c
3
, c
5
(y
10
2y
8
9y
7
3y
6
+ 2y
5
+ 14y
4
+ 14y
3
+ 16y
2
+ 7y + 1)
· (y
12
5y
11
+ ··· 10y + 1)(y
30
6y
29
+ ··· 35y + 1)
· (y
84
10y
83
+ ··· 808486y + 22801)
c
4
, c
8
, c
9
c
12
(y
10
9y
9
+ ··· 12y + 1)(y
12
10y
11
+ ··· 45y + 1)
· (y
30
31y
29
+ ··· 38y + 1)(y
84
59y
83
+ ··· + 699y + 49)
c
6
, c
10
, c
11
((y
6
7y
5
+ ··· + y + 1)
2
)(y
10
12y
9
+ ··· 7y + 1)
· (y
30
31y
29
+ ··· 380y + 16)(y
42
45y
41
+ ··· 37y + 1)
2
30