12a
1205
(K12a
1205
)
A knot diagram
1
Linearized knot diagam
4 11 7 10 9 3 1 12 5 2 6 8
Solving Sequence
6,9
5
2,10
11 3 12 4 1 8 7
c
5
c
9
c
10
c
2
c
11
c
4
c
1
c
8
c
7
c
3
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h73u
10
18u
9
+ 462u
8
140u
7
+ 1023u
6
266u
5
+ 780u
4
+ 66u
3
+ 131u
2
+ 119b + 230u + 144,
209u
10
+ 120u
9
+ ··· + 119a 365, u
11
+ 6u
9
+ 12u
7
+ 2u
6
+ 8u
5
+ 7u
4
+ 3u
3
+ 5u
2
+ 4u + 1i
I
u
2
= h1.25318 × 10
92
u
59
+ 2.44302 × 10
92
u
58
+ ··· + 8.16358 × 10
92
b 9.04940 × 10
93
,
3.40806 × 10
92
u
59
3.96269 × 10
92
u
58
+ ··· + 4.08179 × 10
93
a + 7.98134 × 10
94
,
u
60
+ 2u
59
+ ··· 252u + 36i
I
u
3
= h−au + b u + 1, 3a
2
2au 2a + u 2, u
2
u + 1i
I
u
4
= h−au + b + 2a + 1, 6a
2
+ 3au + 6a + u + 1, u
2
+ 2i
I
u
5
= h3b + 5u + 4, 3a + u 1, u
2
+ u + 1i
I
v
1
= ha, 3b v, v
2
+ 3v + 3i
* 6 irreducible components of dim
C
= 0, with total 83 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h73u
10
18u
9
+ · · · + 119b + 144, 209u
10
+ 120u
9
+ · · · + 119a
365, u
11
+ 6u
9
+ · · · + 4u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
2
=
1.75630u
10
1.00840u
9
+ ··· + 7.21849u + 3.06723
0.613445u
10
+ 0.151261u
9
+ ··· 1.93277u 1.21008
a
10
=
u
u
3
+ u
a
11
=
0.815126u
10
0.420168u
9
+ ··· + 3.92437u + 1.36134
0.815126u
10
+ 0.420168u
9
+ ··· 3.92437u 2.36134
a
3
=
8
7
u
10
6
7
u
9
+ ··· +
37
7
u +
13
7
9
7
u
10
5
7
u
9
+ ··· +
39
7
u +
19
7
a
12
=
1
0.815126u
10
+ 0.420168u
9
+ ··· 3.92437u 2.36134
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
2
1
1.04202u
10
+ 0.722689u
9
+ ··· 4.78992u 2.78151
a
8
=
u
0.420168u
10
0.226891u
9
+ ··· + 1.89916u + 0.815126
a
7
=
u
3
2u
8
7
u
10
6
7
u
9
+ ··· +
23
7
u +
13
7
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
372
119
u
10
20
119
u
9
+
300
17
u
8
+
8
17
u
7
+
3596
119
u
6
+
192
17
u
5
+
1184
119
u
4
+
3088
119
u
3
+
172
119
u
2
+
520
119
u +
1350
119
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
17(17u
11
173u
10
+ ··· + 236u 40)
c
2
, c
3
, c
6
c
10
u
11
+ 2u
10
2u
9
6u
8
+ 4u
6
+ 2u
5
+ 5u
4
+ 7u
3
+ 3u
2
+ 1
c
4
, c
5
, c
7
c
8
, c
9
, c
12
u
11
+ 6u
9
+ 12u
7
2u
6
+ 8u
5
7u
4
+ 3u
3
5u
2
+ 4u 1
c
11
17(17u
11
173u
10
+ ··· + 1920u 256)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
289(289y
11
4463y
10
+ ··· 8944y 1600)
c
2
, c
3
, c
6
c
10
y
11
8y
10
+ ··· 6y 1
c
4
, c
5
, c
7
c
8
, c
9
, c
12
y
11
+ 12y
10
+ ··· + 6y 1
c
11
289(289y
11
+ 875y
10
+ ··· + 311296y 65536)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.680975 + 0.675052I
a = 0.702616 0.178305I
b = 0.09896 + 1.78843I
7.07216 + 7.70619I 4.42118 7.71824I
u = 0.680975 0.675052I
a = 0.702616 + 0.178305I
b = 0.09896 1.78843I
7.07216 7.70619I 4.42118 + 7.71824I
u = 0.161381 + 1.138270I
a = 0.151626 0.748852I
b = 0.166833 0.455380I
4.56283 + 4.40440I 3.38740 7.31700I
u = 0.161381 1.138270I
a = 0.151626 + 0.748852I
b = 0.166833 + 0.455380I
4.56283 4.40440I 3.38740 + 7.31700I
u = 0.441939 + 0.225736I
a = 0.875079 + 0.513848I
b = 0.189711 + 0.169501I
0.884913 0.517986I 8.70917 + 3.40201I
u = 0.441939 0.225736I
a = 0.875079 0.513848I
b = 0.189711 0.169501I
0.884913 + 0.517986I 8.70917 3.40201I
u = 0.490964
a = 1.13114
b = 1.04783
4.15298 7.21490
u = 0.14545 + 1.56334I
a = 0.406442 0.035002I
b = 1.119140 + 0.082033I
11.62950 + 4.58145I 3.17899 3.55621I
u = 0.14545 1.56334I
a = 0.406442 + 0.035002I
b = 1.119140 0.082033I
11.62950 4.58145I 3.17899 + 3.55621I
u = 0.30038 + 1.63421I
a = 0.72653 2.10196I
b = 0.74940 + 3.07893I
17.0539 15.5687I 8.09374 + 6.58975I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.30038 1.63421I
a = 0.72653 + 2.10196I
b = 0.74940 3.07893I
17.0539 + 15.5687I 8.09374 6.58975I
6
II. I
u
2
= h1.25 × 10
92
u
59
+ 2.44 × 10
92
u
58
+ · · · + 8.16 × 10
92
b 9.05 ×
10
93
, 3.41 × 10
92
u
59
3.96 × 10
92
u
58
+ · · · + 4.08 × 10
93
a + 7.98 ×
10
94
, u
60
+ 2u
59
+ · · · 252u + 36i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
2
=
0.0834942u
59
+ 0.0970821u
58
+ ··· + 113.120u 19.5535
0.153508u
59
0.299258u
58
+ ··· 77.5361u + 11.0851
a
10
=
u
u
3
+ u
a
11
=
0.200490u
59
+ 0.427440u
58
+ ··· + 66.0395u 10.3644
0.0334245u
59
0.0366283u
58
+ ··· 43.3403u + 8.64055
a
3
=
0.114742u
59
0.326177u
58
+ ··· + 10.2529u 5.95573
0.0790482u
59
0.144541u
58
+ ··· 49.6201u + 7.70720
a
12
=
0.167066u
59
+ 0.390811u
58
+ ··· + 22.6992u 1.72388
0.0334245u
59
0.0366283u
58
+ ··· 43.3403u + 8.64055
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
0.0413371u
59
+ 0.0216303u
58
+ ··· + 86.0346u 13.9193
0.120341u
59
0.219185u
58
+ ··· 70.0325u + 10.5469
a
8
=
0.0796060u
59
+ 0.168470u
58
+ ··· + 8.25556u + 4.31633
0.0126674u
59
0.0693921u
58
+ ··· + 26.9172u 3.41367
a
7
=
0.0484754u
59
+ 0.174481u
58
+ ··· 39.6371u + 10.1820
0.0492349u
59
0.128310u
58
+ ··· 11.5918u + 1.43518
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.349952u
59
+ 0.763128u
58
+ ··· + 53.7078u 5.40438
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
9(3u
30
+ 14u
29
+ ··· + 1087u 223)
2
c
2
, c
3
, c
6
c
10
u
60
+ 4u
59
+ ··· + 649u + 171
c
4
, c
5
, c
7
c
8
, c
9
, c
12
u
60
2u
59
+ ··· + 252u + 36
c
11
9(3u
30
+ 10u
29
+ ··· + 1366u + 167)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
81(9y
30
274y
29
+ ··· 2522245y + 49729)
2
c
2
, c
3
, c
6
c
10
y
60
48y
59
+ ··· 61075y + 29241
c
4
, c
5
, c
7
c
8
, c
9
, c
12
y
60
+ 66y
59
+ ··· + 27792y + 1296
c
11
81(9y
30
+ 218y
29
+ ··· + 161758y + 27889)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.759750 + 0.662027I
a = 0.931053 + 0.172845I
b = 0.09008 + 1.98013I
1.86631 2.71902I 0
u = 0.759750 0.662027I
a = 0.931053 0.172845I
b = 0.09008 1.98013I
1.86631 + 2.71902I 0
u = 0.314512 + 0.960641I
a = 0.190977 + 0.499858I
b = 0.419438 + 0.858326I
1.10026 2.27454I 0
u = 0.314512 0.960641I
a = 0.190977 0.499858I
b = 0.419438 0.858326I
1.10026 + 2.27454I 0
u = 0.129337 + 0.950966I
a = 1.60981 1.06801I
b = 0.20747 + 1.44586I
12.50500 0.66605I 8.84093 + 0.I
u = 0.129337 0.950966I
a = 1.60981 + 1.06801I
b = 0.20747 1.44586I
12.50500 + 0.66605I 8.84093 + 0.I
u = 0.588192 + 0.683594I
a = 1.039310 0.418609I
b = 0.102741 0.312706I
9.38994 6.05319I 4.32641 + 5.70687I
u = 0.588192 0.683594I
a = 1.039310 + 0.418609I
b = 0.102741 + 0.312706I
9.38994 + 6.05319I 4.32641 5.70687I
u = 0.776674 + 0.411211I
a = 1.206490 + 0.140254I
b = 0.23920 + 1.51841I
6.21939 2.80157I 5.28737 + 3.00592I
u = 0.776674 0.411211I
a = 1.206490 0.140254I
b = 0.23920 1.51841I
6.21939 + 2.80157I 5.28737 3.00592I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.916850 + 0.719386I
a = 0.816528 0.325861I
b = 0.10977 2.54265I
14.6835 11.0154I 0
u = 0.916850 0.719386I
a = 0.816528 + 0.325861I
b = 0.10977 + 2.54265I
14.6835 + 11.0154I 0
u = 0.576968 + 0.560729I
a = 0.802985 0.539725I
b = 0.221236 0.702999I
4.48267 + 2.06711I 1.19955 3.78893I
u = 0.576968 0.560729I
a = 0.802985 + 0.539725I
b = 0.221236 + 0.702999I
4.48267 2.06711I 1.19955 + 3.78893I
u = 0.355589 + 0.707290I
a = 0.035366 + 0.978857I
b = 0.126483 1.162340I
6.21939 2.80157I 5.28737 + 3.00592I
u = 0.355589 0.707290I
a = 0.035366 0.978857I
b = 0.126483 + 1.162340I
6.21939 + 2.80157I 5.28737 3.00592I
u = 1.076620 + 0.557141I
a = 1.321450 0.193835I
b = 1.09050 2.33731I
14.0759 + 4.5063I 0
u = 1.076620 0.557141I
a = 1.321450 + 0.193835I
b = 1.09050 + 2.33731I
14.0759 4.5063I 0
u = 0.646640 + 0.296075I
a = 0.016407 0.488252I
b = 0.682960 1.103020I
8.24661 + 1.82485I 1.78640 0.62717I
u = 0.646640 0.296075I
a = 0.016407 + 0.488252I
b = 0.682960 + 1.103020I
8.24661 1.82485I 1.78640 + 0.62717I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.278410 + 1.260600I
a = 0.247426 0.743643I
b = 1.277450 0.383957I
4.84465 0
u = 0.278410 1.260600I
a = 0.247426 + 0.743643I
b = 1.277450 + 0.383957I
4.84465 0
u = 1.092800 + 0.750740I
a = 1.124120 0.436933I
b = 0.32876 3.19706I
8.92368 + 3.64409I 0
u = 1.092800 0.750740I
a = 1.124120 + 0.436933I
b = 0.32876 + 3.19706I
8.92368 3.64409I 0
u = 0.06050 + 1.41516I
a = 1.40096 + 0.56694I
b = 1.56146 0.59391I
7.20542 + 0.22364I 0
u = 0.06050 1.41516I
a = 1.40096 0.56694I
b = 1.56146 + 0.59391I
7.20542 0.22364I 0
u = 0.06398 + 1.43597I
a = 0.171576 0.010774I
b = 0.742412 0.071303I
4.48267 2.06711I 0
u = 0.06398 1.43597I
a = 0.171576 + 0.010774I
b = 0.742412 + 0.071303I
4.48267 + 2.06711I 0
u = 0.225772 + 0.478556I
a = 2.00278 + 0.98084I
b = 0.296782 + 0.092033I
1.86631 + 2.71902I 6.02392 8.48187I
u = 0.225772 0.478556I
a = 2.00278 0.98084I
b = 0.296782 0.092033I
1.86631 2.71902I 6.02392 + 8.48187I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.05387 + 1.52215I
a = 2.31103 + 0.70700I
b = 3.18172 0.73741I
13.6864 0
u = 0.05387 1.52215I
a = 2.31103 0.70700I
b = 3.18172 + 0.73741I
13.6864 0
u = 0.05204 + 1.52292I
a = 0.65459 2.51222I
b = 0.60287 + 2.55575I
8.24661 + 1.82485I 0
u = 0.05204 1.52292I
a = 0.65459 + 2.51222I
b = 0.60287 2.55575I
8.24661 1.82485I 0
u = 0.18810 + 1.51588I
a = 0.87884 + 2.25051I
b = 0.27333 2.47353I
12.50500 + 0.66605I 0
u = 0.18810 1.51588I
a = 0.87884 2.25051I
b = 0.27333 + 2.47353I
12.50500 0.66605I 0
u = 0.244643 + 0.402854I
a = 0.334643 + 1.093090I
b = 0.256864 1.075110I
1.70488 + 0.85900I 3.09812 + 2.75630I
u = 0.244643 0.402854I
a = 0.334643 1.093090I
b = 0.256864 + 1.075110I
1.70488 0.85900I 3.09812 2.75630I
u = 0.05319 + 1.56037I
a = 0.242202 0.185041I
b = 0.623485 + 0.111421I
8.92368 + 3.64409I 0
u = 0.05319 1.56037I
a = 0.242202 + 0.185041I
b = 0.623485 0.111421I
8.92368 3.64409I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.045280 + 0.430914I
a = 2.09252 1.08737I
b = 1.15217 + 1.56271I
7.20542 + 0.22364I 9.04537 + 1.25928I
u = 0.045280 0.430914I
a = 2.09252 + 1.08737I
b = 1.15217 1.56271I
7.20542 0.22364I 9.04537 1.25928I
u = 0.264001 + 0.331764I
a = 0.075640 + 0.209812I
b = 0.785454 + 0.369858I
1.70488 0.85900I 3.09812 2.75630I
u = 0.264001 0.331764I
a = 0.075640 0.209812I
b = 0.785454 0.369858I
1.70488 + 0.85900I 3.09812 + 2.75630I
u = 0.415346 + 0.011561I
a = 1.51548 + 1.51134I
b = 0.315561 + 0.009208I
1.10026 + 2.27454I 6.39783 4.86989I
u = 0.415346 0.011561I
a = 1.51548 1.51134I
b = 0.315561 0.009208I
1.10026 2.27454I 6.39783 + 4.86989I
u = 0.19401 + 1.58701I
a = 0.49148 + 2.16389I
b = 0.52046 2.62595I
9.38994 6.05319I 0
u = 0.19401 1.58701I
a = 0.49148 2.16389I
b = 0.52046 + 2.62595I
9.38994 + 6.05319I 0
u = 0.10187 + 1.60028I
a = 0.36353 1.96711I
b = 0.25135 + 2.10282I
14.0759 4.5063I 0
u = 0.10187 1.60028I
a = 0.36353 + 1.96711I
b = 0.25135 2.10282I
14.0759 + 4.5063I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.17637 + 1.60289I
a = 0.015923 + 0.384340I
b = 0.632206 0.409488I
17.1000 8.9031I 0
u = 0.17637 1.60289I
a = 0.015923 0.384340I
b = 0.632206 + 0.409488I
17.1000 + 8.9031I 0
u = 0.20940 + 1.60061I
a = 0.54658 + 2.10296I
b = 0.36822 2.53572I
14.6835 + 11.0154I 0
u = 0.20940 1.60061I
a = 0.54658 2.10296I
b = 0.36822 + 2.53572I
14.6835 11.0154I 0
u = 0.02241 + 1.64609I
a = 0.32821 + 1.68373I
b = 1.15247 1.88578I
18.0731 1.1594I 0
u = 0.02241 1.64609I
a = 0.32821 1.68373I
b = 1.15247 + 1.88578I
18.0731 + 1.1594I 0
u = 0.31119 + 1.69477I
a = 0.41080 2.03463I
b = 1.37332 + 3.18776I
17.1000 + 8.9031I 0
u = 0.31119 1.69477I
a = 0.41080 + 2.03463I
b = 1.37332 3.18776I
17.1000 8.9031I 0
u = 0.39432 + 1.69567I
a = 0.21517 1.69581I
b = 2.06977 + 2.35462I
18.0731 1.1594I 0
u = 0.39432 1.69567I
a = 0.21517 + 1.69581I
b = 2.06977 2.35462I
18.0731 + 1.1594I 0
15
III. I
u
3
= h−au + b u + 1, 3a
2
2au 2a + u 2, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u 1
a
2
=
a
au + u 1
a
10
=
u
u 1
a
11
=
a + u
au
a
3
=
u
u 1
a
12
=
au a + u
au
a
4
=
u
u 2
a
1
=
au + a u
2au 2a + 1
a
8
=
2u + 2
a + 1
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
3(3u
4
6u
3
+ u
2
+ 2u + 1)
c
2
(u 1)
4
c
3
, c
4
, c
5
(u
2
u + 1)
2
c
6
, c
9
(u
2
+ u + 1)
2
c
7
, c
8
, c
12
(u
2
+ 2)
2
c
10
(u + 1)
4
c
11
3(3u
4
+ 4u
2
+ 4u + 1)
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
9(9y
4
30y
3
+ 31y
2
2y + 1)
c
2
, c
10
(y 1)
4
c
3
, c
4
, c
5
c
6
, c
9
(y
2
+ y + 1)
2
c
7
, c
8
, c
12
(y + 2)
4
c
11
9(9y
4
+ 24y
3
+ 22y
2
8y + 1)
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.316500 + 0.288675I
b = 0.09175 + 2.15048I
6.57974 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 0.316497 + 0.288675I
b = 0.908248 + 0.736269I
6.57974 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 1.316500 0.288675I
b = 0.09175 2.15048I
6.57974 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.316497 0.288675I
b = 0.908248 0.736269I
6.57974 2.02988I 6.00000 + 3.46410I
19
IV. I
u
4
= h−au + b + 2a + 1, 6a
2
+ 3au + 6a + u + 1, u
2
+ 2i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
2
a
2
=
a
au 2a 1
a
10
=
u
u
a
11
=
au + a +
3
2
u
2a u 1
a
3
=
au a
1
2
u 2
1
a
12
=
au a +
1
2
u 1
2a u 1
a
4
=
1
0
a
1
=
au a 1
au 2a 1
a
8
=
au a 1
au + 1
a
7
=
au a
1
2
u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au 8a 4u 8
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
3(3u
4
6u
3
+ u
2
+ 2u + 1)
c
2
, c
12
(u
2
+ u + 1)
2
c
3
(u + 1)
4
c
4
, c
5
, c
9
(u
2
+ 2)
2
c
6
(u 1)
4
c
7
, c
8
, c
10
(u
2
u + 1)
2
c
11
3(3u
4
+ 4u
2
+ 4u + 1)
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
9(9y
4
30y
3
+ 31y
2
2y + 1)
c
2
, c
7
, c
8
c
10
, c
12
(y
2
+ y + 1)
2
c
3
, c
6
(y 1)
4
c
4
, c
5
, c
9
(y + 2)
4
c
11
9(9y
4
+ 24y
3
+ 22y
2
8y + 1)
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.704124 0.642229I
b = 1.316500 + 0.288675I
6.57974 2.02988I 6.00000 + 3.46410I
u = 1.414210I
a = 0.295876 0.064878I
b = 0.316497 0.288675I
6.57974 + 2.02988I 6.00000 3.46410I
u = 1.414210I
a = 0.704124 + 0.642229I
b = 1.316500 0.288675I
6.57974 + 2.02988I 6.00000 3.46410I
u = 1.414210I
a = 0.295876 + 0.064878I
b = 0.316497 + 0.288675I
6.57974 2.02988I 6.00000 + 3.46410I
23
V. I
u
5
= h3b + 5u + 4, 3a + u 1, u
2
+ u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
5
=
1
u 1
a
2
=
1
3
u +
1
3
5
3
u
4
3
a
10
=
u
u + 1
a
11
=
2
3
u +
1
3
2
3
u
1
3
a
3
=
u
u 1
a
12
=
0
2
3
u
1
3
a
4
=
u
u 2
a
1
=
0
2
3
u
1
3
a
8
=
0
u
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
3
u 6
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
3(3u
2
3u + 1)
c
2
(u + 1)
2
c
3
, c
9
u
2
u + 1
c
4
, c
5
, c
6
u
2
+ u + 1
c
7
, c
8
, c
12
u
2
c
10
(u 1)
2
c
11
3(3u
2
+ 1)
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
9(9y
2
3y + 1)
c
2
, c
10
(y 1)
2
c
3
, c
4
, c
5
c
6
, c
9
y
2
+ y + 1
c
7
, c
8
, c
12
y
2
c
11
9(3y + 1)
2
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.288675I
b = 0.50000 1.44338I
1.64493 2.02988I 5.33333 1.15470I
u = 0.500000 0.866025I
a = 0.500000 + 0.288675I
b = 0.50000 + 1.44338I
1.64493 + 2.02988I 5.33333 + 1.15470I
27
VI. I
v
1
= ha, 3b v, v
2
+ 3v + 3i
(i) Arc colorings
a
6
=
1
0
a
9
=
v
0
a
5
=
1
0
a
2
=
0
1
3
v
a
10
=
v
0
a
11
=
v
2
3
v + 1
a
3
=
2v 3
1
a
12
=
5
3
v + 1
2
3
v + 1
a
4
=
1
0
a
1
=
1
3
v
1
3
v
a
8
=
5
3
v + 3
1
3
v
a
7
=
2v + 4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
3
v
10
3
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
3(3u
2
3u + 1)
c
2
, c
7
, c
8
u
2
+ u + 1
c
3
(u 1)
2
c
4
, c
5
, c
9
u
2
c
6
(u + 1)
2
c
10
, c
12
u
2
u + 1
c
11
3(3u
2
+ 1)
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
9(9y
2
3y + 1)
c
2
, c
7
, c
8
c
10
, c
12
y
2
+ y + 1
c
3
, c
6
(y 1)
2
c
4
, c
5
, c
9
y
2
c
11
9(3y + 1)
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.50000 + 0.86603I
a = 0
b = 0.500000 + 0.288675I
1.64493 + 2.02988I 5.33333 + 1.15470I
v = 1.50000 0.86603I
a = 0
b = 0.500000 0.288675I
1.64493 2.02988I 5.33333 1.15470I
31
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
12393(3u
2
3u + 1)
2
(3u
4
6u
3
+ u
2
+ 2u + 1)
2
· (17u
11
173u
10
+ ··· + 236u 40)
· (3u
30
+ 14u
29
+ ··· + 1087u 223)
2
c
2
, c
6
(u 1)
4
(u + 1)
2
(u
2
+ u + 1)
3
· (u
11
+ 2u
10
2u
9
6u
8
+ 4u
6
+ 2u
5
+ 5u
4
+ 7u
3
+ 3u
2
+ 1)
· (u
60
+ 4u
59
+ ··· + 649u + 171)
c
3
, c
10
(u 1)
2
(u + 1)
4
(u
2
u + 1)
3
· (u
11
+ 2u
10
2u
9
6u
8
+ 4u
6
+ 2u
5
+ 5u
4
+ 7u
3
+ 3u
2
+ 1)
· (u
60
+ 4u
59
+ ··· + 649u + 171)
c
4
, c
5
, c
7
c
8
u
2
(u
2
+ 2)
2
(u
2
u + 1)
2
(u
2
+ u + 1)
· (u
11
+ 6u
9
+ 12u
7
2u
6
+ 8u
5
7u
4
+ 3u
3
5u
2
+ 4u 1)
· (u
60
2u
59
+ ··· + 252u + 36)
c
9
, c
12
u
2
(u
2
+ 2)
2
(u
2
u + 1)(u
2
+ u + 1)
2
· (u
11
+ 6u
9
+ 12u
7
2u
6
+ 8u
5
7u
4
+ 3u
3
5u
2
+ 4u 1)
· (u
60
2u
59
+ ··· + 252u + 36)
c
11
12393(3u
2
+ 1)
2
(3u
4
+ 4u
2
+ 4u + 1)
2
· (17u
11
173u
10
+ ··· + 1920u 256)
· (3u
30
+ 10u
29
+ ··· + 1366u + 167)
2
32
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
153586449(9y
2
3y + 1)
2
(9y
4
30y
3
+ 31y
2
2y + 1)
2
· (289y
11
4463y
10
+ ··· 8944y 1600)
· (9y
30
274y
29
+ ··· 2522245y + 49729)
2
c
2
, c
3
, c
6
c
10
((y 1)
6
)(y
2
+ y + 1)
3
(y
11
8y
10
+ ··· 6y 1)
· (y
60
48y
59
+ ··· 61075y + 29241)
c
4
, c
5
, c
7
c
8
, c
9
, c
12
y
2
(y + 2)
4
(y
2
+ y + 1)
3
(y
11
+ 12y
10
+ ··· + 6y 1)
· (y
60
+ 66y
59
+ ··· + 27792y + 1296)
c
11
153586449(3y + 1)
4
(9y
4
+ 24y
3
+ 22y
2
8y + 1)
2
· (289y
11
+ 875y
10
+ ··· + 311296y 65536)
· (9y
30
+ 218y
29
+ ··· + 161758y + 27889)
2
33