12a
1206
(K12a
1206
)
A knot diagram
1
Linearized knot diagam
4 11 8 1 12 3 10 5 2 7 6 9
Solving Sequence
1,5
4
2,9
10 8 3 7 12 6 11
c
4
c
1
c
9
c
8
c
3
c
7
c
12
c
5
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
18
+ 21u
17
+ ··· + 4b + 12, 3u
18
15u
17
+ ··· + 8a + 60, u
19
7u
18
+ ··· 36u + 8i
I
u
2
= h−992688u
27
+ 12625506u
26
+ ··· + 34453b + 67406583,
67406583u
27
859313682u
26
+ ··· + 2928505a 5202887920, u
28
14u
27
+ ··· 855u + 85i
I
u
3
= h545822815415u
11
a
5
8124336604603u
11
a
4
+ ··· 7690591677159a + 38068629937764,
3u
11
a
4
+ u
11
a
3
+ ··· + 21a + 95,
u
12
+ 3u
11
+ 8u
10
+ 13u
9
+ 18u
8
+ 21u
7
+ 19u
6
+ 17u
5
+ 10u
4
+ 6u
3
+ 4u
2
+ 1i
I
u
4
= h−15385u
25
30619u
24
+ ··· + 143017b + 1607536,
229648u
25
1852569u
24
+ ··· + 143017a 478848, u
26
+ 8u
25
+ ··· + 62u + 7i
I
u
5
= h−a
3
u
2
+ a
3
u a
2
u
2
+ a
3
2a
2
u 2u
2
a a
2
6au + 2u
2
+ 2b 2a + u + 2,
a
3
u
2
+ a
4
+ 2a
3
2a
2
u + 3u
2
a a
2
+ au + 10u
2
+ 5a + 5u + 17, u
3
+ u
2
+ 2u + 1i
I
u
6
= h−9a
5
u 20a
5
+ 14a
4
u 31a
4
+ 73a
3
u + 38a
3
18a
2
u + 46a
2
82au + 43b 15a 17u 33,
a
6
a
5
u 2a
4
u 3a
4
+ 3a
3
u + 2a
3
+ a
2
u a
2
2au + a + u + 1, u
2
+ u + 1i
I
u
7
= h−u
2
+ b u 1, u
2
+ a + 1, u
3
+ u
2
+ 2u + 1i
I
u
8
= hb, a 1, u
3
+ u
2
+ 2u + 1i
I
u
9
= hb + u, a, u
3
+ u
2
+ 2u + 1i
I
u
10
= hb + u, a 1, u
2
u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
* 10 irreducible components of dim
C
= 0, with total 180 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−3u
18
+ 21u
17
+ · · · + 4b + 12, 3u
18
15u
17
+ · · · + 8a + 60, u
19
7u
18
+ · · · 36u + 8i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
0.375000u
18
+ 1.87500u
17
+ ··· + 29.7500u 7.50000
3
4
u
18
21
4
u
17
+ ··· + 21u 3
a
10
=
3
8
u
18
+
7
8
u
17
+ ··· +
239
4
u
27
2
1
4
u
18
1
4
u
17
+ ··· + 27u 5
a
8
=
3
8
u
18
27
8
u
17
+ ··· +
203
4
u
21
2
3
4
u
18
21
4
u
17
+ ··· + 21u 3
a
3
=
5
8
u
18
37
8
u
17
+ ··· +
83
4
u 3
3
4
u
18
19
4
u
17
+ ··· +
15
2
u 1
a
7
=
1.37500u
18
+ 9.87500u
17
+ ··· + 23.7500u 7.50000
5
4
u
18
+
31
4
u
17
+ ··· + 7u 1
a
12
=
7
8
u
18
+
47
8
u
17
+ ···
57
4
u + 2
1
4
u
18
9
4
u
17
+ ··· +
61
2
u 7
a
6
=
7
8
u
18
37
8
u
17
+ ···
25
2
u + 3
u
18
+
15
2
u
17
+ ···
71
2
u + 9
a
11
=
1
8
u
18
17
8
u
17
+ ···
11
4
u +
5
2
5
4
u
18
35
4
u
17
+ ··· + 19u 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
18
7u
17
+ 28u
16
77u
15
+ 159u
14
256u
13
+ 322u
12
304u
11
+
174u
10
+ 38u
9
247u
8
+ 357u
7
324u
6
+ 183u
5
32u
4
69u
3
+ 81u
2
50u + 10
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
19
7u
18
+ ··· 36u + 8
c
2
, c
6
, c
8
c
12
u
19
+ 2u
17
+ ··· + 5u + 1
c
3
, c
9
u
19
5u
18
+ ··· + 22u + 12
c
5
, c
11
u
19
11u
18
+ ··· 224u + 32
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
19
+ 11y
18
+ ··· 304y 64
c
2
, c
6
, c
8
c
12
y
19
+ 4y
18
+ ··· + 5y 1
c
3
, c
9
y
19
15y
18
+ ··· 164y 144
c
5
, c
11
y
19
+ 9y
18
+ ··· + 512y 1024
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.089256 + 1.007980I
a = 1.05363 1.09151I
b = 1.00618 1.15946I
0.28070 2.38140I 5.46513 + 2.98597I
u = 0.089256 1.007980I
a = 1.05363 + 1.09151I
b = 1.00618 + 1.15946I
0.28070 + 2.38140I 5.46513 2.98597I
u = 0.129693 + 1.056200I
a = 0.901489 + 0.653587I
b = 0.573401 + 1.036920I
4.83655 + 0.75731I 0.29531 + 1.48803I
u = 0.129693 1.056200I
a = 0.901489 0.653587I
b = 0.573401 1.036920I
4.83655 0.75731I 0.29531 1.48803I
u = 1.070160 + 0.136306I
a = 0.880972 0.767951I
b = 1.047450 + 0.701745I
8.89959 + 8.35587I 14.4938 6.1627I
u = 1.070160 0.136306I
a = 0.880972 + 0.767951I
b = 1.047450 0.701745I
8.89959 8.35587I 14.4938 + 6.1627I
u = 0.283957 + 1.128460I
a = 0.468063 0.377219I
b = 0.292767 0.635305I
2.62810 + 3.46250I 5.41765 4.29370I
u = 0.283957 1.128460I
a = 0.468063 + 0.377219I
b = 0.292767 + 0.635305I
2.62810 3.46250I 5.41765 + 4.29370I
u = 1.041110 + 0.527820I
a = 0.102160 + 0.634385I
b = 0.441200 0.606542I
1.27781 + 2.04691I 4.21735 12.06061I
u = 1.041110 0.527820I
a = 0.102160 0.634385I
b = 0.441200 + 0.606542I
1.27781 2.04691I 4.21735 + 12.06061I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726236
a = 0.400633
b = 0.290954
1.16657 7.54420
u = 0.311802 + 0.537677I
a = 0.371981 + 1.120770I
b = 0.486627 0.549464I
0.73404 + 1.68177I 4.58767 4.23908I
u = 0.311802 0.537677I
a = 0.371981 1.120770I
b = 0.486627 + 0.549464I
0.73404 1.68177I 4.58767 + 4.23908I
u = 0.56617 + 1.36797I
a = 1.054680 + 0.464599I
b = 1.23269 + 1.17973I
1.0494 20.1774I 7.61137 + 10.06897I
u = 0.56617 1.36797I
a = 1.054680 0.464599I
b = 1.23269 1.17973I
1.0494 + 20.1774I 7.61137 10.06897I
u = 0.61070 + 1.36309I
a = 0.904319 0.205921I
b = 0.832955 1.106920I
5.3054 14.5379I 4.33039 + 10.14035I
u = 0.61070 1.36309I
a = 0.904319 + 0.205921I
b = 0.832955 + 1.106920I
5.3054 + 14.5379I 4.33039 10.14035I
u = 0.76609 + 1.32486I
a = 0.570950 0.103738I
b = 0.299958 + 0.835901I
4.42824 6.79161I 0.60019 + 10.60796I
u = 0.76609 1.32486I
a = 0.570950 + 0.103738I
b = 0.299958 0.835901I
4.42824 + 6.79161I 0.60019 10.60796I
7
II. I
u
2
=
h−9.93×10
5
u
27
+1.26×10
7
u
26
+· · · +3.45×10
4
b+6.74×10
7
, 6.74×10
7
u
27
8.59 × 10
8
u
26
+ · · · + 2.93 × 10
6
a 5.20 × 10
9
, u
28
14u
27
+ · · · 855u + 85i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
23.0174u
27
+ 293.431u
26
+ ··· 16206.9u + 1776.64
28.8128u
27
366.456u
26
+ ··· + 17903.2u 1956.48
a
10
=
15.6733u
27
202.020u
26
+ ··· + 10608.3u 1152.25
66.8738u
27
+ 859.315u
26
+ ··· 45141.3u + 4901.10
a
8
=
5.79541u
27
73.0251u
26
+ ··· + 1696.29u 179.843
28.8128u
27
366.456u
26
+ ··· + 17903.2u 1956.48
a
3
=
10.2277u
27
+ 130.845u
26
+ ··· 6911.51u + 756.352
76.4924u
27
+ 982.058u
26
+ ··· 51779.1u + 5632.50
a
7
=
45.0001u
27
576.476u
26
+ ··· + 28129.0u 3053.06
140.536u
27
+ 1807.65u
26
+ ··· 95332.1u + 10352.0
a
12
=
54.3698u
27
696.998u
26
+ ··· + 37058.1u 4043.28
64.1800u
27
+ 822.445u
26
+ ··· 42441.9u + 4621.44
a
6
=
14.5690u
27
185.347u
26
+ ··· + 7527.26u 813.539
57.4557u
27
734.448u
26
+ ··· + 38610.4u 4216.93
a
11
=
36.9975u
27
+ 469.587u
26
+ ··· 23688.5u + 2597.06
54.5215u
27
700.386u
26
+ ··· + 34381.6u 3716.35
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12799129
34453
u
27
164577489
34453
u
26
+ ··· +
8305113305
34453
u
900475230
34453
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
28
14u
27
+ ··· 855u + 85
c
2
, c
6
, c
8
c
12
u
28
+ 4u
27
+ ··· 2u + 1
c
3
, c
9
(u
14
+ 2u
13
+ ··· u + 1)
2
c
5
, c
11
(u
14
9u
13
+ ··· 416u + 64)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
28
+ 22y
27
+ ··· + 79025y + 7225
c
2
, c
6
, c
8
c
12
y
28
+ 4y
27
+ ··· 10y + 1
c
3
, c
9
(y
14
+ 4y
12
+ ··· 3y + 1)
2
c
5
, c
11
(y
14
+ 15y
13
+ ··· 5120y + 4096)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.220870 + 0.964019I
a = 0.976311 0.269060I
b = 0.475016 0.881755I
3.33157 0.04587I 0
u = 0.220870 0.964019I
a = 0.976311 + 0.269060I
b = 0.475016 + 0.881755I
3.33157 + 0.04587I 0
u = 0.122015 + 0.951919I
a = 1.22987 + 0.91180I
b = 1.01802 + 1.05948I
0.07368 3.51148I 8.00000 + 0.I
u = 0.122015 0.951919I
a = 1.22987 0.91180I
b = 1.01802 1.05948I
0.07368 + 3.51148I 8.00000 + 0.I
u = 0.244537 + 0.840894I
a = 0.869115 0.048582I
b = 0.253383 + 0.718954I
0.07368 + 3.51148I 8.00000 3.11087I
u = 0.244537 0.840894I
a = 0.869115 + 0.048582I
b = 0.253383 0.718954I
0.07368 3.51148I 8.00000 + 3.11087I
u = 1.160470 + 0.000299I
a = 0.944468 0.613736I
b = 1.095850 + 0.712507I
5.3108 14.1347I 0
u = 1.160470 0.000299I
a = 0.944468 + 0.613736I
b = 1.095850 0.712507I
5.3108 + 14.1347I 0
u = 0.725406 + 0.404321I
a = 0.59123 + 1.38586I
b = 0.989219 0.766265I
3.19044 + 2.69182I 19.3369 28.0122I
u = 0.725406 0.404321I
a = 0.59123 1.38586I
b = 0.989219 + 0.766265I
3.19044 2.69182I 19.3369 + 28.0122I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493746 + 1.144530I
a = 1.266750 + 0.472811I
b = 1.16660 + 1.21638I
0.82954 7.36918I 0
u = 0.493746 1.144530I
a = 1.266750 0.472811I
b = 1.16660 1.21638I
0.82954 + 7.36918I 0
u = 0.288974 + 1.259790I
a = 0.981923 0.455892I
b = 0.858078 1.105270I
8.09763 2.64325I 0
u = 0.288974 1.259790I
a = 0.981923 + 0.455892I
b = 0.858078 + 1.105270I
8.09763 + 2.64325I 0
u = 0.601682 + 1.216810I
a = 1.019270 + 0.137827I
b = 0.780986 + 1.157340I
1.26514 7.93875I 0
u = 0.601682 1.216810I
a = 1.019270 0.137827I
b = 0.780986 1.157340I
1.26514 + 7.93875I 0
u = 1.366350 + 0.089976I
a = 0.354535 0.376999I
b = 0.518338 + 0.483212I
1.26514 + 7.93875I 0
u = 1.366350 0.089976I
a = 0.354535 + 0.376999I
b = 0.518338 0.483212I
1.26514 7.93875I 0
u = 0.567715 + 1.286990I
a = 1.111150 0.453605I
b = 1.21460 1.17252I
5.3108 14.1347I 0
u = 0.567715 1.286990I
a = 1.111150 + 0.453605I
b = 1.21460 + 1.17252I
5.3108 + 14.1347I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.250099 + 0.518873I
a = 1.58195 + 0.00658I
b = 0.392229 0.822475I
3.33157 + 0.04587I 1.17760 + 1.07149I
u = 0.250099 0.518873I
a = 1.58195 0.00658I
b = 0.392229 + 0.822475I
3.33157 0.04587I 1.17760 1.07149I
u = 0.24300 + 1.41025I
a = 0.643805 + 0.208891I
b = 0.451032 + 0.857168I
8.09763 + 2.64325I 0
u = 0.24300 1.41025I
a = 0.643805 0.208891I
b = 0.451032 0.857168I
8.09763 2.64325I 0
u = 0.82492 + 1.56847I
a = 0.060677 + 0.273569I
b = 0.479139 0.130503I
0.82954 + 7.36918I 0
u = 0.82492 1.56847I
a = 0.060677 0.273569I
b = 0.479139 + 0.130503I
0.82954 7.36918I 0
u = 0.37929 + 1.83155I
a = 0.057146 0.158811I
b = 0.269196 + 0.164900I
3.19044 + 2.69182I 0
u = 0.37929 1.83155I
a = 0.057146 + 0.158811I
b = 0.269196 0.164900I
3.19044 2.69182I 0
13
III. I
u
3
= h5.46 × 10
11
a
5
u
11
8.12 × 10
12
a
4
u
11
+ · · · 7.69 × 10
12
a + 3.81 ×
10
13
, 3u
11
a
4
+ u
11
a
3
+ · · · + 21a + 95, u
12
+ 3u
11
+ · · · + 4u
2
+ 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
a
0.0661105a
5
u
11
+ 0.984027a
4
u
11
+ ··· + 0.931491a 4.61091
a
10
=
0.141190a
5
u
11
+ 0.271994a
4
u
11
+ ··· + 1.47180a 3.20730
0.292464a
5
u
11
+ 0.0577256a
4
u
11
+ ··· + 0.826930a 2.94212
a
8
=
0.0661105a
5
u
11
+ 0.984027a
4
u
11
+ ··· + 1.93149a 4.61091
0.0661105a
5
u
11
+ 0.984027a
4
u
11
+ ··· + 0.931491a 4.61091
a
3
=
1.03112a
5
u
11
0.0958048a
4
u
11
+ ··· 3.35664a 3.06813
0.807877a
5
u
11
+ 0.0734221a
4
u
11
+ ··· 2.59366a 0.289458
a
7
=
0.300034a
5
u
11
+ 0.348634a
4
u
11
+ ··· + 1.91449a 1.62119
0.528393a
5
u
11
+ 0.238256a
4
u
11
+ ··· 0.0490275a + 0.579304
a
12
=
a
2
u
0.619812a
5
u
11
0.0748662a
4
u
11
+ ··· 0.523197a + 1.74280
a
6
=
0.418102a
5
u
11
0.227140a
4
u
11
+ ··· 1.99363a 0.387884
0.0626009a
5
u
11
+ 0.0471036a
4
u
11
+ ··· 0.374182a + 2.20004
a
11
=
0.348882a
5
u
11
0.0682222a
4
u
11
+ ··· 0.105524a 2.43122
0.557211a
5
u
11
+ 0.121970a
4
u
11
+ ··· + 0.149015a 0.542756
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
18401813591608
8256215143297
u
11
a
5
4028033611868
8256215143297
u
11
a
4
+ ···
4921195373544
8256215143297
a
130687438596918
8256215143297
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
6
c
2
, c
6
, c
8
c
12
u
72
+ 3u
71
+ ··· + 354u + 59
c
3
, c
9
(u
36
11u
34
+ ··· + 1120u + 320)
2
c
5
, c
11
(u
3
+ u
2
+ 2u + 1)
24
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
12
+ 7y
11
+ ··· + 8y + 1)
6
c
2
, c
6
, c
8
c
12
y
72
23y
71
+ ··· 406510y + 3481
c
3
, c
9
(y
36
22y
35
+ ··· 97280y + 102400)
2
c
5
, c
11
(y
3
+ 3y
2
+ 2y 1)
24
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.234552 + 1.002020I
a = 0.720810 + 1.054620I
b = 0.95349 + 1.51437I
0.94621 4.13739I 9.48147 + 7.59495I
u = 0.234552 + 1.002020I
a = 0.688527 0.072860I
b = 1.69950 + 0.60321I
3.19138 6.96551I 2.95220 + 10.57440I
u = 0.234552 + 1.002020I
a = 1.64398 + 0.56675I
b = 1.225820 + 0.474901I
0.94621 4.13739I 9.48147 + 7.59495I
u = 0.234552 + 1.002020I
a = 0.19432 1.74157I
b = 0.234503 0.672828I
3.19138 6.96551I 2.95220 + 10.57440I
u = 0.234552 + 1.002020I
a = 0.064271 + 0.176004I
b = 2.12527 1.85054I
0.94621 9.79363I 9.4815 + 13.5538I
u = 0.234552 + 1.002020I
a = 1.28018 + 2.42066I
b = 0.191434 + 0.023119I
0.94621 9.79363I 9.4815 + 13.5538I
u = 0.234552 1.002020I
a = 0.720810 1.054620I
b = 0.95349 1.51437I
0.94621 + 4.13739I 9.48147 7.59495I
u = 0.234552 1.002020I
a = 0.688527 + 0.072860I
b = 1.69950 0.60321I
3.19138 + 6.96551I 2.95220 10.57440I
u = 0.234552 1.002020I
a = 1.64398 0.56675I
b = 1.225820 0.474901I
0.94621 + 4.13739I 9.48147 7.59495I
u = 0.234552 1.002020I
a = 0.19432 + 1.74157I
b = 0.234503 + 0.672828I
3.19138 + 6.96551I 2.95220 10.57440I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.234552 1.002020I
a = 0.064271 0.176004I
b = 2.12527 + 1.85054I
0.94621 + 9.79363I 9.4815 13.5538I
u = 0.234552 1.002020I
a = 1.28018 2.42066I
b = 0.191434 0.023119I
0.94621 + 9.79363I 9.4815 13.5538I
u = 1.090290 + 0.140460I
a = 1.014270 + 0.266172I
b = 1.17507 0.87900I
5.72690 + 3.91075I 17.7913 8.6071I
u = 1.090290 + 0.140460I
a = 0.748871 + 0.516780I
b = 1.31217 0.63591I
5.72690 1.74550I 17.7913 2.6482I
u = 1.090290 + 0.140460I
a = 0.702755 + 0.135494I
b = 0.649097 + 0.219395I
1.58932 + 1.08263I 11.26202 5.62762I
u = 1.090290 + 0.140460I
a = 1.109950 0.726241I
b = 0.889075 + 0.458254I
5.72690 1.74550I 17.7913 2.6482I
u = 1.090290 + 0.140460I
a = 1.162330 0.656465I
b = 1.068470 + 0.432670I
5.72690 + 3.91075I 17.7913 8.6071I
u = 1.090290 + 0.140460I
a = 0.611124 + 0.122496I
b = 0.785240 + 0.049019I
1.58932 + 1.08263I 11.26202 5.62762I
u = 1.090290 0.140460I
a = 1.014270 0.266172I
b = 1.17507 + 0.87900I
5.72690 3.91075I 17.7913 + 8.6071I
u = 1.090290 0.140460I
a = 0.748871 0.516780I
b = 1.31217 + 0.63591I
5.72690 + 1.74550I 17.7913 + 2.6482I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.090290 0.140460I
a = 0.702755 0.135494I
b = 0.649097 0.219395I
1.58932 1.08263I 11.26202 + 5.62762I
u = 1.090290 0.140460I
a = 1.109950 + 0.726241I
b = 0.889075 0.458254I
5.72690 + 1.74550I 17.7913 + 2.6482I
u = 1.090290 0.140460I
a = 1.162330 + 0.656465I
b = 1.068470 0.432670I
5.72690 3.91075I 17.7913 + 8.6071I
u = 1.090290 0.140460I
a = 0.611124 0.122496I
b = 0.785240 0.049019I
1.58932 1.08263I 11.26202 + 5.62762I
u = 0.185688 + 0.817666I
a = 0.948598 + 0.343126I
b = 1.295990 0.229859I
1.58932 1.08263I 11.26202 + 5.62762I
u = 0.185688 + 0.817666I
a = 0.344955 1.070660I
b = 0.62210 2.20652I
5.72690 + 1.74550I 17.7913 + 2.6482I
u = 0.185688 + 0.817666I
a = 0.07496 + 1.56796I
b = 0.456706 + 0.711922I
1.58932 1.08263I 11.26202 + 5.62762I
u = 0.185688 + 0.817666I
a = 0.067503 0.291607I
b = 2.28703 + 1.05977I
5.72690 3.91075I 17.7913 + 8.6071I
u = 0.185688 + 0.817666I
a = 2.73052 0.14073I
b = 0.939496 0.083249I
5.72690 + 1.74550I 17.7913 + 2.6482I
u = 0.185688 + 0.817666I
a = 0.62849 2.93974I
b = 0.225903 + 0.109343I
5.72690 3.91075I 17.7913 + 8.6071I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.185688 0.817666I
a = 0.948598 0.343126I
b = 1.295990 + 0.229859I
1.58932 + 1.08263I 11.26202 5.62762I
u = 0.185688 0.817666I
a = 0.344955 + 1.070660I
b = 0.62210 + 2.20652I
5.72690 1.74550I 17.7913 2.6482I
u = 0.185688 0.817666I
a = 0.07496 1.56796I
b = 0.456706 0.711922I
1.58932 + 1.08263I 11.26202 5.62762I
u = 0.185688 0.817666I
a = 0.067503 + 0.291607I
b = 2.28703 1.05977I
5.72690 + 3.91075I 17.7913 8.6071I
u = 0.185688 0.817666I
a = 2.73052 + 0.14073I
b = 0.939496 + 0.083249I
5.72690 1.74550I 17.7913 2.6482I
u = 0.185688 0.817666I
a = 0.62849 + 2.93974I
b = 0.225903 0.109343I
5.72690 + 3.91075I 17.7913 8.6071I
u = 0.529049 + 1.245360I
a = 0.890029 + 0.495100I
b = 1.31752 + 1.32168I
2.39928 + 7.38625I 13.25651 4.74994I
u = 0.529049 + 1.245360I
a = 0.870453 + 0.208440I
b = 0.806758 + 0.638494I
1.73831 + 4.55813I 6.72725 1.77049I
u = 0.529049 + 1.245360I
a = 0.667447 0.364270I
b = 0.720095 0.973752I
1.73831 + 4.55813I 6.72725 1.77049I
u = 0.529049 + 1.245360I
a = 0.056263 + 0.623747I
b = 0.375011 + 0.044252I
2.39928 + 1.73000I 13.25651 + 1.20895I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.529049 + 1.245360I
a = 1.279760 0.514283I
b = 1.087450 0.846474I
2.39928 + 7.38625I 13.25651 4.74994I
u = 0.529049 + 1.245360I
a = 0.138468 0.242303I
b = 0.806554 + 0.259924I
2.39928 + 1.73000I 13.25651 + 1.20895I
u = 0.529049 1.245360I
a = 0.890029 0.495100I
b = 1.31752 1.32168I
2.39928 7.38625I 13.25651 + 4.74994I
u = 0.529049 1.245360I
a = 0.870453 0.208440I
b = 0.806758 0.638494I
1.73831 4.55813I 6.72725 + 1.77049I
u = 0.529049 1.245360I
a = 0.667447 + 0.364270I
b = 0.720095 + 0.973752I
1.73831 4.55813I 6.72725 + 1.77049I
u = 0.529049 1.245360I
a = 0.056263 0.623747I
b = 0.375011 0.044252I
2.39928 1.73000I 13.25651 1.20895I
u = 0.529049 1.245360I
a = 1.279760 + 0.514283I
b = 1.087450 + 0.846474I
2.39928 7.38625I 13.25651 + 4.74994I
u = 0.529049 1.245360I
a = 0.138468 + 0.242303I
b = 0.806554 0.259924I
2.39928 1.73000I 13.25651 1.20895I
u = 0.251512 + 0.449740I
a = 0.157220 + 1.333380I
b = 1.273440 0.607533I
2.39928 + 1.73000I 13.25651 + 1.20895I
u = 0.251512 + 0.449740I
a = 1.78243 0.04706I
b = 0.877545 + 0.518333I
1.73831 + 4.55813I 6.72725 1.77049I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.251512 + 0.449740I
a = 0.04671 1.97735I
b = 0.469465 0.789793I
1.73831 + 4.55813I 6.72725 1.77049I
u = 0.251512 + 0.449740I
a = 0.78901 + 1.82839I
b = 0.27710 + 1.74968I
2.39928 + 7.38625I 13.25651 4.74994I
u = 0.251512 + 0.449740I
a = 0.17720 + 2.73239I
b = 0.560132 0.406069I
2.39928 + 1.73000I 13.25651 + 1.20895I
u = 0.251512 + 0.449740I
a = 3.22606 1.18799I
b = 1.020750 0.105012I
2.39928 + 7.38625I 13.25651 4.74994I
u = 0.251512 0.449740I
a = 0.157220 1.333380I
b = 1.273440 + 0.607533I
2.39928 1.73000I 13.25651 1.20895I
u = 0.251512 0.449740I
a = 1.78243 + 0.04706I
b = 0.877545 0.518333I
1.73831 4.55813I 6.72725 + 1.77049I
u = 0.251512 0.449740I
a = 0.04671 + 1.97735I
b = 0.469465 + 0.789793I
1.73831 4.55813I 6.72725 + 1.77049I
u = 0.251512 0.449740I
a = 0.78901 1.82839I
b = 0.27710 1.74968I
2.39928 7.38625I 13.25651 + 4.74994I
u = 0.251512 0.449740I
a = 0.17720 2.73239I
b = 0.560132 + 0.406069I
2.39928 1.73000I 13.25651 1.20895I
u = 0.251512 0.449740I
a = 3.22606 + 1.18799I
b = 1.020750 + 0.105012I
2.39928 7.38625I 13.25651 + 4.74994I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.55241 + 1.40748I
a = 0.848748 0.631916I
b = 1.07565 1.32900I
0.94621 + 9.79363I 9.4815 13.5538I
u = 0.55241 + 1.40748I
a = 1.078110 + 0.341098I
b = 1.35827 + 0.84552I
0.94621 + 9.79363I 9.4815 13.5538I
u = 0.55241 + 1.40748I
a = 0.717143 + 0.435072I
b = 0.661991 + 0.890809I
3.19138 + 6.96551I 2.95220 10.57440I
u = 0.55241 + 1.40748I
a = 0.708387 0.192308I
b = 1.008510 0.769026I
3.19138 + 6.96551I 2.95220 10.57440I
u = 0.55241 + 1.40748I
a = 0.352995 0.502106I
b = 0.378753 0.019095I
0.94621 + 4.13739I 9.48147 7.59495I
u = 0.55241 + 1.40748I
a = 0.103275 + 0.228566I
b = 0.901704 + 0.219465I
0.94621 + 4.13739I 9.48147 7.59495I
u = 0.55241 1.40748I
a = 0.848748 + 0.631916I
b = 1.07565 + 1.32900I
0.94621 9.79363I 9.4815 + 13.5538I
u = 0.55241 1.40748I
a = 1.078110 0.341098I
b = 1.35827 0.84552I
0.94621 9.79363I 9.4815 + 13.5538I
u = 0.55241 1.40748I
a = 0.717143 0.435072I
b = 0.661991 0.890809I
3.19138 6.96551I 2.95220 + 10.57440I
u = 0.55241 1.40748I
a = 0.708387 + 0.192308I
b = 1.008510 + 0.769026I
3.19138 6.96551I 2.95220 + 10.57440I
23
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.55241 1.40748I
a = 0.352995 + 0.502106I
b = 0.378753 + 0.019095I
0.94621 4.13739I 9.48147 + 7.59495I
u = 0.55241 1.40748I
a = 0.103275 0.228566I
b = 0.901704 0.219465I
0.94621 4.13739I 9.48147 + 7.59495I
24
IV.
I
u
4
= h−1.54 × 10
4
u
25
3.06 × 10
4
u
24
+ · · · + 1.43 × 10
5
b + 1.61 × 10
6
, 2.30 ×
10
5
u
25
1.85×10
6
u
24
+· · ·+1.43×10
5
a4.79×10
5
, u
26
+8u
25
+· · ·+62u+7i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
3
+ u
a
9
=
1.60574u
25
+ 12.9535u
24
+ ··· + 63.1609u + 3.34819
0.107575u
25
+ 0.214093u
24
+ ··· 96.2076u 11.2402
a
10
=
2.07086u
25
+ 16.3907u
24
+ ··· + 10.9392u 3.39093
0.398428u
25
+ 2.68665u
24
+ ··· 58.3252u 6.48759
a
8
=
1.71331u
25
+ 13.1676u
24
+ ··· 33.0468u 7.89198
0.107575u
25
+ 0.214093u
24
+ ··· 96.2076u 11.2402
a
3
=
0.145276u
25
+ 1.23548u
24
+ ··· + 3.71046u + 2.78149
0.555451u
25
+ 3.96142u
24
+ ··· + 24.3411u + 2.87123
a
7
=
1.44082u
25
+ 10.9124u
24
+ ··· + 70.0376u + 8.96126
1.20267u
25
9.48464u
24
+ ··· 131.319u 16.8348
a
12
=
0.548480u
25
+ 3.60536u
24
+ ··· + 10.5103u 0.548263
0.782480u
25
5.61567u
24
+ ··· 33.5540u 3.83936
a
6
=
1.07562u
25
+ 8.70837u
24
+ ··· + 161.903u + 22.9308
0.540768u
25
4.59087u
24
+ ··· 89.4320u 13.0067
a
11
=
2.51044u
25
18.3829u
24
+ ··· 187.442u 25.5075
2.60958u
25
+ 19.0437u
24
+ ··· + 155.294u + 19.2651
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1001674
143017
u
25
+
7560050
143017
u
24
+ ··· +
64577203
143017
u +
731282
20431
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
26
8u
25
+ ··· 62u + 7
c
2
, c
6
, c
8
c
12
u
26
+ 2u
25
+ ··· 3u + 1
c
3
, c
9
(u
13
3u
11
+ ··· + 7u 2)
2
c
4
, c
10
u
26
+ 8u
25
+ ··· + 62u + 7
c
5
, c
11
u
26
+ 17u
24
+ ··· + 127u
2
+ 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
26
+ 20y
25
+ ··· + 160y + 49
c
2
, c
6
, c
8
c
12
y
26
8y
25
+ ··· 21y + 1
c
3
, c
9
(y
13
6y
12
+ ··· + 25y 4)
2
c
5
, c
11
(y
13
+ 17y
12
+ ··· + 127y + 1)
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.126752 + 0.966195I
a = 0.91926 1.23027I
b = 1.07216 1.04412I
0.80008 8.71139I 7.24650 + 3.93807I
u = 0.126752 0.966195I
a = 0.91926 + 1.23027I
b = 1.07216 + 1.04412I
0.80008 + 8.71139I 7.24650 3.93807I
u = 1.104360 + 0.054100I
a = 1.029820 0.483545I
b = 1.111120 + 0.589718I
5.20764 + 2.92822I 11.13108 2.29409I
u = 1.104360 0.054100I
a = 1.029820 + 0.483545I
b = 1.111120 0.589718I
5.20764 2.92822I 11.13108 + 2.29409I
u = 0.249520 + 0.858731I
a = 1.26530 0.94200I
b = 1.124640 0.851506I
1.63936 + 3.42007I 15.9102 3.3285I
u = 0.249520 0.858731I
a = 1.26530 + 0.94200I
b = 1.124640 + 0.851506I
1.63936 3.42007I 15.9102 + 3.3285I
u = 0.311736 + 0.833354I
a = 0.122888 + 0.916019I
b = 0.725060 + 0.387965I
2.45972 6.02995I 7.20901 + 5.92270I
u = 0.311736 0.833354I
a = 0.122888 0.916019I
b = 0.725060 0.387965I
2.45972 + 6.02995I 7.20901 5.92270I
u = 0.027785 + 0.872149I
a = 1.09086 + 1.27146I
b = 1.07859 + 0.98672I
5.20764 2.92822I 11.13108 + 2.29409I
u = 0.027785 0.872149I
a = 1.09086 1.27146I
b = 1.07859 0.98672I
5.20764 + 2.92822I 11.13108 2.29409I
28
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.456886 + 1.136290I
a = 0.398294 0.124934I
b = 0.323935 + 0.395494I
0.37057 + 6.99005I 6.13816 3.85066I
u = 0.456886 1.136290I
a = 0.398294 + 0.124934I
b = 0.323935 0.395494I
0.37057 6.99005I 6.13816 + 3.85066I
u = 0.673860 + 0.329753I
a = 0.79797 1.42231I
b = 1.006730 + 0.695309I
3.19822 2.47147I 18.8522 7.6031I
u = 0.673860 0.329753I
a = 0.79797 + 1.42231I
b = 1.006730 0.695309I
3.19822 + 2.47147I 18.8522 + 7.6031I
u = 0.475346 + 1.203380I
a = 1.135870 0.510890I
b = 1.15472 1.12403I
0.37057 + 6.99005I 6.13816 3.85066I
u = 0.475346 1.203380I
a = 1.135870 + 0.510890I
b = 1.15472 + 1.12403I
0.37057 6.99005I 6.13816 + 3.85066I
u = 0.781203 + 1.177850I
a = 0.326732 + 0.382643I
b = 0.705942 + 0.085920I
1.63936 + 3.42007I 15.9102 3.3285I
u = 0.781203 1.177850I
a = 0.326732 0.382643I
b = 0.705942 0.085920I
1.63936 3.42007I 15.9102 + 3.3285I
u = 0.570925 + 0.073702I
a = 1.299550 0.186223I
b = 0.755669 + 0.010539I
2.22694 18.0258 + 0.I
u = 0.570925 0.073702I
a = 1.299550 + 0.186223I
b = 0.755669 0.010539I
2.22694 18.0258 + 0.I
29
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.53769 + 1.36875I
a = 0.986018 + 0.509889I
b = 1.22809 + 1.07545I
0.80008 + 8.71139I 8.00000 3.93807I
u = 0.53769 1.36875I
a = 0.986018 0.509889I
b = 1.22809 1.07545I
0.80008 8.71139I 8.00000 + 3.93807I
u = 0.59852 + 1.38494I
a = 0.661103 0.232284I
b = 0.717382 0.776563I
2.45972 + 6.02995I 8.00000 5.92270I
u = 0.59852 1.38494I
a = 0.661103 + 0.232284I
b = 0.717382 + 0.776563I
2.45972 6.02995I 8.00000 + 5.92270I
u = 0.06826 + 1.64669I
a = 0.089846 + 0.182370I
b = 0.306439 0.135500I
3.19822 + 2.47147I 18.8522 + 0.I
u = 0.06826 1.64669I
a = 0.089846 0.182370I
b = 0.306439 + 0.135500I
3.19822 2.47147I 18.8522 + 0.I
30
V.
I
u
5
= h−a
3
u
2
a
2
u
2
+· · ·2a+2, a
3
u
2
+3u
2
a+· · ·+5a+17, u
3
+u
2
+2u +1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
2
u 1
a
9
=
a
1
2
a
3
u
2
+
1
2
a
2
u
2
+ ··· + a 1
a
10
=
1
2
a
3
u
2
+ a
2
u
2
+ ··· + 2a +
1
2
3
2
a
2
u
2
+ 4u
2
a + ··· + a 1
a
8
=
1
2
a
3
u
2
+
1
2
a
2
u
2
+ ··· + 2a 1
1
2
a
3
u
2
+
1
2
a
2
u
2
+ ··· + a 1
a
3
=
1
2
a
3
u
2
a
2
u
2
+ ··· + a
3
2
1
2
a
3
u
2
3
2
u
2
+ ··· + a
2
1
a
7
=
3
2
a
3
u
2
+ a
2
u
2
+ ··· a
1
2
2a
3
u
2
+
1
2
a
2
u
2
+ ··· 3a +
1
2
a
12
=
a
2
u
1
2
a
3
u
2
1
2
u
2
+ ··· + a
3
2
a
6
=
1
2
a
3
u
2
u
2
a + ···
3
2
u 4
1
2
a
3
u
2
+
1
2
a
2
u
2
+ ··· + a + 1
a
11
=
1
2
a
3
u
2
+
1
2
a
2
u
2
+ ··· +
1
2
a
2
1
1
2
a
2
u
2
+ u
2
a + ···
1
2
a
3
+
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
u 2a
2
u
2
+ 2a
3
2a
2
u 4u
2
a 4au 10u
2
10u 20
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
10
, c
11
(u
3
+ u
2
+ 2u + 1)
4
c
2
, c
6
, c
8
c
12
u
12
2u
10
+ ··· + 18u
2
+ 23
c
3
, c
9
u
12
u
11
+ ··· 112u + 64
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
10
, c
11
(y
3
+ 3y
2
+ 2y 1)
4
c
2
, c
6
, c
8
c
12
y
12
4y
11
+ ··· + 828y + 529
c
3
, c
9
y
12
+ 25y
11
+ ··· + 7936y + 4096
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.854517 0.303520I
b = 1.90525 1.05169I
3.02413 + 8.48437I 2.49024 8.93834I
u = 0.215080 + 1.307140I
a = 1.061910 0.672209I
b = 0.444709 0.681213I
7.16171 + 5.65624I 4.03902 5.95889I
u = 0.215080 + 1.307140I
a = 0.561914 + 0.247756I
b = 1.10707 + 1.24349I
7.16171 + 5.65624I 4.03902 5.95889I
u = 0.215080 + 1.307140I
a = 1.01688 + 1.29025I
b = 0.580533 + 1.051690I
3.02413 + 8.48437I 2.49024 8.93834I
u = 0.215080 1.307140I
a = 0.854517 + 0.303520I
b = 1.90525 + 1.05169I
3.02413 8.48437I 2.49024 + 8.93834I
u = 0.215080 1.307140I
a = 1.061910 + 0.672209I
b = 0.444709 + 0.681213I
7.16171 5.65624I 4.03902 + 5.95889I
u = 0.215080 1.307140I
a = 0.561914 0.247756I
b = 1.10707 1.24349I
7.16171 5.65624I 4.03902 + 5.95889I
u = 0.215080 1.307140I
a = 1.01688 1.29025I
b = 0.580533 1.051690I
3.02413 8.48437I 2.49024 + 8.93834I
u = 0.569840
a = 0.97401 + 1.60320I
b = 1.217390 0.351288I
5.25104 2.82812I 15.5488 + 2.9794I
u = 0.569840
a = 0.97401 1.60320I
b = 1.217390 + 0.351288I
5.25104 + 2.82812I 15.5488 2.9794I
34
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.569840
a = 2.13637 + 0.61647I
b = 0.555029 0.913568I
5.25104 + 2.82812I 15.5488 2.9794I
u = 0.569840
a = 2.13637 0.61647I
b = 0.555029 + 0.913568I
5.25104 2.82812I 15.5488 + 2.9794I
35
VI.
I
u
6
= h−9a
5
u + 14a
4
u + · · · 15a 33, a
5
u 2a
4
u + · · · + a + 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u + 1
a
2
=
u
u + 1
a
9
=
a
0.209302a
5
u 0.325581a
4
u + ··· + 0.348837a + 0.767442
a
10
=
0.465116a
5
u + 0.720930a
4
u + ··· + 0.441860a + 0.372093
au
a
8
=
0.209302a
5
u 0.325581a
4
u + ··· + 1.34884a + 0.767442
0.209302a
5
u 0.325581a
4
u + ··· + 0.348837a + 0.767442
a
3
=
0.139535a
5
u + 1.11628a
4
u + ··· + 0.232558a + 0.511628
0.441860a
5
u + 0.465116a
4
u + ··· + 0.930233a + 0.0465116
a
7
=
2au + a
0.209302a
5
u 0.325581a
4
u + ··· 0.651163a + 0.767442
a
12
=
a
2
u
0.581395a
5
u + 0.651163a
4
u + ··· 0.697674a + 0.465116
a
6
=
0.279070a
5
u + 0.232558a
4
u + ··· 0.534884a + 1.02326
0.325581a
5
u 0.395349a
4
u + ··· + 0.209302a + 1.86047
a
11
=
0.465116a
5
u 0.720930a
4
u + ··· + 1.55814a 0.372093
0.255814a
5
u 1.04651a
4
u + ··· + 0.906977a + 0.395349
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
44
43
a
5
u
36
43
a
5
+
180
43
a
4
u+
56
43
a
4
+
140
43
a
3
u+
292
43
a
3
256
43
a
2
u
72
43
a
2
96
43
au
156
43
a
280
43
u
670
43
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
2
+ u + 1)
6
c
2
, c
6
, c
8
c
12
u
12
+ u
11
+ 5u
9
+ 12u
8
+ 5u
7
5u
6
9u
5
+ 8u
3
+ 4u
2
4u + 1
c
3
, c
9
(u
3
+ u
2
1)
4
c
5
, c
11
(u
3
+ u
2
+ 2u + 1)
4
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
2
+ y + 1)
6
c
2
, c
6
, c
8
c
12
y
12
y
11
+ ··· 8y + 1
c
3
, c
9
(y
3
y
2
+ 2y 1)
4
c
5
, c
11
(y
3
+ 3y
2
+ 2y 1)
4
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.045930 0.181543I
b = 0.743183 + 0.342830I
1.11345 + 4.05977I 6.98049 6.92820I
u = 0.500000 + 0.866025I
a = 0.921971 + 0.577427I
b = 1.16740 + 1.64205I
3.02413 + 6.88789I 13.5098 9.9077I
u = 0.500000 + 0.866025I
a = 0.668492 0.472201I
b = 0.365745 0.996574I
1.11345 + 4.05977I 6.98049 6.92820I
u = 0.500000 + 0.866025I
a = 0.18118 + 1.48292I
b = 0.291045 0.197103I
3.02413 + 1.23164I 13.50976 3.94876I
u = 0.500000 + 0.866025I
a = 0.025174 0.350604I
b = 1.37483 + 0.58456I
3.02413 + 1.23164I 13.50976 3.94876I
u = 0.500000 + 0.866025I
a = 2.00576 0.18997I
b = 0.961053 0.509737I
3.02413 + 6.88789I 13.5098 9.9077I
u = 0.500000 0.866025I
a = 1.045930 + 0.181543I
b = 0.743183 0.342830I
1.11345 4.05977I 6.98049 + 6.92820I
u = 0.500000 0.866025I
a = 0.921971 0.577427I
b = 1.16740 1.64205I
3.02413 6.88789I 13.5098 + 9.9077I
u = 0.500000 0.866025I
a = 0.668492 + 0.472201I
b = 0.365745 + 0.996574I
1.11345 4.05977I 6.98049 + 6.92820I
u = 0.500000 0.866025I
a = 0.18118 1.48292I
b = 0.291045 + 0.197103I
3.02413 1.23164I 13.50976 + 3.94876I
39
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 0.025174 + 0.350604I
b = 1.37483 0.58456I
3.02413 1.23164I 13.50976 + 3.94876I
u = 0.500000 0.866025I
a = 2.00576 + 0.18997I
b = 0.961053 + 0.509737I
3.02413 6.88789I 13.5098 + 9.9077I
40
VII. I
u
7
= h−u
2
+ b u 1, u
2
+ a + 1, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
2
u 1
a
9
=
u
2
1
u
2
+ u + 1
a
10
=
1
u
2
a
8
=
u
u
2
+ u + 1
a
3
=
u
2
+ 1
u
2
u 1
a
7
=
0
u
a
12
=
1
0
a
6
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
8u 20
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
9
u
3
u
2
+ 2u 1
c
2
, c
6
, c
8
c
12
u
3
u
2
+ 1
c
4
, c
10
u
3
+ u
2
+ 2u + 1
c
5
, c
11
u
3
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
9
, c
10
y
3
+ 3y
2
+ 2y 1
c
2
, c
6
, c
8
c
12
y
3
y
2
+ 2y 1
c
5
, c
11
y
3
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.662359 + 0.562280I
b = 0.877439 + 0.744862I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.215080 1.307140I
a = 0.662359 0.562280I
b = 0.877439 0.744862I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.569840
a = 1.32472
b = 0.754878
2.22691 18.0390
44
VIII. I
u
8
= hb, a 1, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
2
u 1
a
9
=
1
0
a
10
=
u
u
a
8
=
1
0
a
3
=
u
2
+ 1
u
2
a
7
=
u
2
+ 1
u
2
a
12
=
u
u
a
6
=
u
2
+ 1
u
2
a
11
=
u
2
2u 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 10
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
10
c
11
, c
12
u
3
+ u
2
+ 2u + 1
c
3
u
3
3u
2
+ 2u + 1
c
6
, c
8
u
3
c
9
u
3
u
2
+ 1
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
10
c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
3
y
3
5y
2
+ 10y 1
c
6
, c
8
y
3
c
9
y
3
y
2
+ 2y 1
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.569840
a = 1.00000
b = 0
1.11345 9.01950
48
IX. I
u
9
= hb + u, a, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
2
=
u
u
2
u 1
a
9
=
0
u
a
10
=
u
2
2u 1
u
2
2u
a
8
=
u
u
a
3
=
u
u
2
u 1
a
7
=
u
2
+ 1
u
2
+ u + 1
a
12
=
0
u
a
6
=
1
u
2
a
11
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 10
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
7
, c
8
c
10
, c
11
u
3
+ u
2
+ 2u + 1
c
2
, c
12
u
3
c
3
u
3
u
2
+ 1
c
9
u
3
3u
2
+ 2u + 1
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
7
, c
8
c
10
, c
11
y
3
+ 3y
2
+ 2y 1
c
2
, c
12
y
3
c
3
y
3
y
2
+ 2y 1
c
9
y
3
5y
2
+ 10y 1
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0
b = 0.215080 1.307140I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.215080 1.307140I
a = 0
b = 0.215080 + 1.307140I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.569840
a = 0
b = 0.569840
1.11345 9.01950
52
X. I
u
10
= hb + u, a 1, u
2
u + 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
4
=
1
u + 1
a
2
=
u
u 1
a
9
=
1
u
a
10
=
1
u
a
8
=
u + 1
u
a
3
=
1
u + 1
a
7
=
2u + 2
u 1
a
12
=
u
1
a
6
=
u + 1
1
a
11
=
2u 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
53
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
c
10
, c
12
u
2
u + 1
c
3
, c
9
u
2
c
5
, c
11
(u 1)
2
54
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
c
10
, c
12
y
2
+ y + 1
c
3
, c
9
y
2
c
5
, c
11
(y 1)
2
55
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
3.28987 3.00000
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
3.28987 3.00000
56
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
u + 1)(u
2
+ u + 1)
6
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
6
· ((u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
6
)(u
19
7u
18
+ ··· 36u + 8)
· (u
26
8u
25
+ ··· 62u + 7)(u
28
14u
27
+ ··· 855u + 85)
c
2
, c
6
, c
8
c
12
u
3
(u
2
u + 1)(u
3
u
2
+ 1)(u
3
+ u
2
+ 2u + 1)(u
12
2u
10
+ ··· + 18u
2
+ 23)
· (u
12
+ u
11
+ 5u
9
+ 12u
8
+ 5u
7
5u
6
9u
5
+ 8u
3
+ 4u
2
4u + 1)
· (u
19
+ 2u
17
+ ··· + 5u + 1)(u
26
+ 2u
25
+ ··· 3u + 1)
· (u
28
+ 4u
27
+ ··· 2u + 1)(u
72
+ 3u
71
+ ··· + 354u + 59)
c
3
, c
9
u
2
(u
3
3u
2
+ 2u + 1)(u
3
u
2
+ 1)(u
3
u
2
+ 2u 1)(u
3
+ u
2
1)
4
· (u
12
u
11
+ ··· 112u + 64)(u
13
3u
11
+ ··· + 7u 2)
2
· ((u
14
+ 2u
13
+ ··· u + 1)
2
)(u
19
5u
18
+ ··· + 22u + 12)
· (u
36
11u
34
+ ··· + 1120u + 320)
2
c
4
, c
10
(u
2
u + 1)(u
2
+ u + 1)
6
(u
3
+ u
2
+ 2u + 1)
7
· ((u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
6
)(u
19
7u
18
+ ··· 36u + 8)
· (u
26
+ 8u
25
+ ··· + 62u + 7)(u
28
14u
27
+ ··· 855u + 85)
c
5
, c
11
u
3
(u 1)
2
(u
3
+ u
2
+ 2u + 1)
34
(u
14
9u
13
+ ··· 416u + 64)
2
· (u
19
11u
18
+ ··· 224u + 32)(u
26
+ 17u
24
+ ··· + 127u
2
+ 1)
57
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
((y
2
+ y + 1)
7
)(y
3
+ 3y
2
+ 2y 1)
7
(y
12
+ 7y
11
+ ··· + 8y + 1)
6
· (y
19
+ 11y
18
+ ··· 304y 64)(y
26
+ 20y
25
+ ··· + 160y + 49)
· (y
28
+ 22y
27
+ ··· + 79025y + 7225)
c
2
, c
6
, c
8
c
12
y
3
(y
2
+ y + 1)(y
3
y
2
+ 2y 1)(y
3
+ 3y
2
+ 2y 1)
· (y
12
4y
11
+ ··· + 828y + 529)(y
12
y
11
+ ··· 8y + 1)
· (y
19
+ 4y
18
+ ··· + 5y 1)(y
26
8y
25
+ ··· 21y + 1)
· (y
28
+ 4y
27
+ ··· 10y + 1)(y
72
23y
71
+ ··· 406510y + 3481)
c
3
, c
9
y
2
(y
3
5y
2
+ 10y 1)(y
3
y
2
+ 2y 1)
5
(y
3
+ 3y
2
+ 2y 1)
· (y
12
+ 25y
11
+ ··· + 7936y + 4096)(y
13
6y
12
+ ··· + 25y 4)
2
· ((y
14
+ 4y
12
+ ··· 3y + 1)
2
)(y
19
15y
18
+ ··· 164y 144)
· (y
36
22y
35
+ ··· 97280y + 102400)
2
c
5
, c
11
y
3
(y 1)
2
(y
3
+ 3y
2
+ 2y 1)
34
(y
13
+ 17y
12
+ ··· + 127y + 1)
2
· (y
14
+ 15y
13
+ ··· 5120y + 4096)
2
· (y
19
+ 9y
18
+ ··· + 512y 1024)
58