12a
1210
(K12a
1210
)
A knot diagram
1
Linearized knot diagam
5 6 7 8 10 3 11 12 1 2 4 9
Solving Sequence
2,6
3 7
4,10
11 8 5 1 9 12
c
2
c
6
c
3
c
10
c
7
c
5
c
1
c
9
c
12
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h9u
11
+ 16u
10
55u
9
83u
8
+ 129u
7
+ 99u
6
194u
5
+ 31u
4
+ 169u
3
50u
2
+ 5b + 11u + 23,
49u
11
81u
10
+ ··· + 15a 123,
u
12
+ 3u
11
4u
10
17u
9
+ 3u
8
+ 30u
7
7u
6
25u
5
+ 22u
4
+ 19u
3
6u
2
+ 3u + 3i
I
u
2
= h−5352912u
25
50199792u
24
+ ··· + 3763339b 53120096,
208439509u
25
+ 1342309427u
24
+ ··· + 18816695a + 581471885, u
26
+ 8u
25
+ ··· + 15u + 5i
I
u
3
= hu
4
2u
2
+ b, u
2
+ a + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
4
= h−u
2
+ b + u + 1, u
4
2u
2
+ a + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
5
= hu
4
u
2
+ b u 1, u
4
2u
3
u
2
+ a + 2u, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
6
= h8u
25
a 29u
25
+ ··· + 24a + 58, 31u
25
a 5u
25
+ ··· 138a + 42, u
26
2u
25
+ ··· 6u + 2i
I
u
7
= hb u, u
2
+ a 2u, u
3
2u
2
+ u 1i
I
u
8
= h−2u
2
+ b u + 7, 3u
2
+ 5a + 2u 7, u
3
u
2
4u + 5i
I
u
9
= hb
2
+ bu + u, a + u 1, u
2
u 1i
I
u
10
= hb 1, a
4
2a
3
a
2
+ 2a 1, u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= h−au + b 1, 2a
2
+ au u 1, u
2
2i
I
u
12
= hb + 1, a
2
+ a 1, u + 1i
I
v
1
= ha, b + 1, v 1i
I
v
2
= ha, b + v 2, v
2
3v + 1i
* 14 irreducible components of dim
C
= 0, with total 128 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h9u
11
+ 16u
10
+ · · · + 5b + 23, 49u
11
81u
10
+ · · · + 15a
123, u
12
+ 3u
11
+ · · · + 3u + 3i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
49
15
u
11
+
27
5
u
10
+ ···
3
5
u +
41
5
9
5
u
11
16
5
u
10
+ ···
11
5
u
23
5
a
11
=
76
15
u
11
+
43
5
u
10
+ ··· +
8
5
u +
64
5
9
5
u
11
16
5
u
10
+ ···
11
5
u
23
5
a
8
=
47
15
u
11
+
26
5
u
10
+ ··· +
11
5
u +
33
5
8
5
u
11
12
5
u
10
+ ··· +
3
5
u
16
5
a
5
=
2.26667u
11
3.40000u
10
+ ··· 1.40000u 4.20000
9
5
u
11
+
16
5
u
10
+ ··· +
11
5
u +
23
5
a
1
=
43
15
u
11
+
24
5
u
10
+ ··· +
4
5
u +
37
5
8
5
u
11
+
12
5
u
10
+ ··· +
2
5
u +
16
5
a
9
=
8
15
u
11
4
5
u
10
+ ···
9
5
u
2
5
4.20000u
11
6.80000u
10
+ ··· 3.80000u 9.40000
a
12
=
31
15
u
11
+
18
5
u
10
+ ···
2
5
u +
29
5
4.20000u
11
6.80000u
10
+ ··· 2.80000u 9.40000
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
54
5
u
11
86
5
u
10
+68u
9
+
438
5
u
8
814
5
u
7
474
5
u
6
+
1184
5
u
5
296
5
u
4
964
5
u
3
+72u
2
96
5
u
108
5
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
12
u
11
+ ··· + 3u 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
u
12
3u
11
+ ··· 3u + 3
c
5
, c
11
u
12
+ 6u
11
+ ··· 6u 4
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
12
5y
11
+ ··· 17y + 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
12
17y
11
+ ··· 45y + 9
c
5
, c
11
y
12
6y
11
+ ··· 92y + 16
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.680890 + 0.727135I
a = 1.248510 0.220272I
b = 0.971458 0.885290I
0.23394 + 9.33805I 5.53743 10.26363I
u = 0.680890 0.727135I
a = 1.248510 + 0.220272I
b = 0.971458 + 0.885290I
0.23394 9.33805I 5.53743 + 10.26363I
u = 1.324330 + 0.041686I
a = 0.211663 1.090800I
b = 0.378676 + 0.744569I
7.08595 1.62424I 11.35275 + 4.35698I
u = 1.324330 0.041686I
a = 0.211663 + 1.090800I
b = 0.378676 0.744569I
7.08595 + 1.62424I 11.35275 4.35698I
u = 0.290084 + 0.470154I
a = 0.244022 1.158860I
b = 0.759615 0.242701I
1.81796 0.64242I 1.71526 + 0.28169I
u = 0.290084 0.470154I
a = 0.244022 + 1.158860I
b = 0.759615 + 0.242701I
1.81796 + 0.64242I 1.71526 0.28169I
u = 1.47793
a = 1.25559
b = 1.72722
9.20200 9.69630
u = 0.440388
a = 1.38391
b = 0.273625
0.916684 11.0470
u = 1.60946 + 0.28464I
a = 0.987579 + 0.304012I
b = 1.21535 1.29571I
15.3678 17.2207I 11.19497 + 7.94421I
u = 1.60946 0.28464I
a = 0.987579 0.304012I
b = 1.21535 + 1.29571I
15.3678 + 17.2207I 11.19497 7.94421I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.74636
a = 0.648286
b = 0.819063
16.8884 17.0050
u = 1.85826
a = 0.398303
b = 1.06787
15.1451 2.48750
7
II.
I
u
2
= h−5.35 × 10
6
u
25
5.02 × 10
7
u
24
+ · · · + 3.76 × 10
6
b 5.31 × 10
7
, 2.08 ×
10
8
u
25
+1.34×10
9
u
24
+· · ·+1.88×10
7
a+5.81×10
8
, u
26
+8u
25
+· · ·+15u+5i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
11.0774u
25
71.3361u
24
+ ··· 92.5092u 30.9019
1.42238u
25
+ 13.3392u
24
+ ··· + 24.8637u + 14.1152
a
11
=
12.4998u
25
84.6753u
24
+ ··· 117.373u 45.0171
1.42238u
25
+ 13.3392u
24
+ ··· + 24.8637u + 14.1152
a
8
=
2.00003u
25
9.31115u
24
+ ··· 10.2443u + 5.69486
8.26240u
25
+ 51.3885u
24
+ ··· + 55.6414u + 23.4455
a
5
=
7.53188u
25
48.5688u
24
+ ··· 76.4824u 17.3150
8.02156u
25
+ 54.0428u
24
+ ··· + 65.7952u + 31.3118
a
1
=
0.393800u
25
0.399903u
24
+ ··· + 26.8406u 14.1831
0.235718u
25
+ 0.476383u
24
+ ··· + 11.1399u + 3.39516
a
9
=
8.23887u
25
55.1220u
24
+ ··· 38.3819u 40.4693
2.26480u
25
+ 17.3975u
24
+ ··· + 31.5190u + 12.4612
a
12
=
10.2768u
25
+ 63.5874u
24
+ ··· + 56.8805u + 31.5716
8.33941u
25
53.4256u
24
+ ··· 60.9941u 23.6603
(ii) Obstruction class = 1
(iii) Cusp Shapes =
57166208
3763339
u
25
+
329816967
3763339
u
24
+ ··· +
279336200
3763339
u +
103669271
3763339
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
26
3u
25
+ ··· + 10u 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
u
26
8u
25
+ ··· 15u + 5
c
5
, c
11
(u
13
3u
12
+ ··· 4u
2
+ 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
26
9y
25
+ ··· 58y + 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
26
28y
25
+ ··· 435y + 25
c
5
, c
11
(y
13
7y
12
+ ··· + 8y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.343289 + 0.874120I
a = 0.330309 + 0.915080I
b = 0.567628 + 0.481289I
0.79020 4.12060I 3.35923 + 9.55417I
u = 0.343289 0.874120I
a = 0.330309 0.915080I
b = 0.567628 0.481289I
0.79020 + 4.12060I 3.35923 9.55417I
u = 0.911007 + 0.034245I
a = 0.598014 0.185260I
b = 1.36067 0.53532I
5.38135 0.78993I 18.1611 + 8.2316I
u = 0.911007 0.034245I
a = 0.598014 + 0.185260I
b = 1.36067 + 0.53532I
5.38135 + 0.78993I 18.1611 8.2316I
u = 1.09289
a = 1.11726
b = 0.126239
6.54220 13.9260
u = 0.708346 + 0.858953I
a = 1.260640 + 0.418277I
b = 0.926363 + 0.940596I
7.7698 + 12.9581I 8.72824 8.95256I
u = 0.708346 0.858953I
a = 1.260640 0.418277I
b = 0.926363 0.940596I
7.7698 12.9581I 8.72824 + 8.95256I
u = 0.654603 + 0.506111I
a = 1.102020 0.068931I
b = 1.023120 + 0.862320I
0.79020 + 4.12060I 3.35923 9.55417I
u = 0.654603 0.506111I
a = 1.102020 + 0.068931I
b = 1.023120 0.862320I
0.79020 4.12060I 3.35923 + 9.55417I
u = 0.458169 + 1.136120I
a = 0.218594 0.876180I
b = 0.429207 0.618806I
6.87671 6.64700I 8.83563 + 10.57231I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.458169 1.136120I
a = 0.218594 + 0.876180I
b = 0.429207 + 0.618806I
6.87671 + 6.64700I 8.83563 10.57231I
u = 1.342220 + 0.045442I
a = 0.344656 0.623993I
b = 0.119008 + 0.591119I
2.78910 + 0.30737I 2.33273 1.31692I
u = 1.342220 0.045442I
a = 0.344656 + 0.623993I
b = 0.119008 0.591119I
2.78910 0.30737I 2.33273 + 1.31692I
u = 1.39644
a = 0.874395
b = 1.24703
6.54220 13.9260
u = 1.42342
a = 1.12461
b = 1.58372
3.37362 1.93880
u = 1.57195 + 0.27829I
a = 0.356146 + 0.031287I
b = 0.240475 0.531059I
5.38135 0.78993I 18.1611 + 8.2316I
u = 1.57195 0.27829I
a = 0.356146 0.031287I
b = 0.240475 + 0.531059I
5.38135 + 0.78993I 18.1611 8.2316I
u = 1.60202 + 0.16401I
a = 0.594151 + 0.344778I
b = 1.24453 1.41124I
6.87671 6.64700I 8.83563 + 10.57231I
u = 1.60202 0.16401I
a = 0.594151 0.344778I
b = 1.24453 + 1.41124I
6.87671 + 6.64700I 8.83563 10.57231I
u = 1.59466 + 0.23960I
a = 0.840412 0.366964I
b = 1.19152 + 1.30819I
7.7698 12.9581I 8.72824 + 8.95256I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.59466 0.23960I
a = 0.840412 + 0.366964I
b = 1.19152 1.30819I
7.7698 + 12.9581I 8.72824 8.95256I
u = 0.077131 + 0.343141I
a = 2.09606 + 1.73666I
b = 0.889556 0.403672I
2.78910 + 0.30737I 2.33273 1.31692I
u = 0.077131 0.343141I
a = 2.09606 1.73666I
b = 0.889556 + 0.403672I
2.78910 0.30737I 2.33273 + 1.31692I
u = 0.196019
a = 8.16649
b = 1.11179
3.37362 1.93880
u = 1.80717 + 0.12130I
a = 0.422586 + 0.028364I
b = 1.022660 + 0.520856I
15.1180 0
u = 1.80717 0.12130I
a = 0.422586 0.028364I
b = 1.022660 0.520856I
15.1180 0
13
III. I
u
3
= hu
4
2u
2
+ b, u
2
+ a + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
2
1
u
4
+ 2u
2
a
11
=
u
4
u
2
1
u
4
+ 2u
2
a
8
=
1
0
a
5
=
u
4
+ u
2
+ 1
u
4
2u
2
a
1
=
u
u
3
u
a
9
=
1
u
2
a
12
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 16u + 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
2
, c
3
, c
8
c
9
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
, c
11
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
6
, c
12
u
5
+ u
4
2u
3
u
2
+ u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
5
5y
4
+ 8y
3
3y
2
y 1
c
5
, c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.482881
b = 0.766826
4.80216 6.96230
u = 0.309916 + 0.549911I
a = 1.206350 0.340852I
b = 0.339110 0.822375I
0.65820 3.06116I 5.03023 + 8.86130I
u = 0.309916 0.549911I
a = 1.206350 + 0.340852I
b = 0.339110 + 0.822375I
0.65820 + 3.06116I 5.03023 8.86130I
u = 1.41878 + 0.21917I
a = 0.964913 + 0.621896I
b = 0.455697 1.200150I
11.7451 + 8.8017I 13.4886 6.9972I
u = 1.41878 0.21917I
a = 0.964913 0.621896I
b = 0.455697 + 1.200150I
11.7451 8.8017I 13.4886 + 6.9972I
17
IV. I
u
4
= h−u
2
+ b + u + 1, u
4
2u
2
+ a + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
4
+ 2u
2
1
u
2
u 1
a
11
=
u
4
+ u
2
+ u
u
2
u 1
a
8
=
u
3
+ u
1
a
5
=
u
4
+ u
2
+ u + 2
u
2
+ u + 1
a
1
=
u
3
+ u
2
2u 1
u
4
+ 2u
3
+ u
2
2u 1
a
9
=
u
3
u 1
u
4
u
3
u
a
12
=
u
4
+ u
3
+ 2u
2
u 1
u
4
+ 3u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 16u + 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
5
+ u
4
u
3
4u
2
3u 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
, c
7
u
5
2u
4
+ 3u
3
+ u
2
3u + 1
c
5
u
5
+ u
4
+ 3u
3
+ 6u
2
+ 5u + 1
c
11
u
5
+ 6u
4
+ 15u
3
+ 21u
2
+ 17u + 7
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
5
3y
4
+ 3y
3
8y
2
+ y 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
5
5y
4
+ 8y
3
3y
2
y 1
c
4
, c
7
y
5
+ 2y
4
+ 7y
3
15y
2
+ 7y 1
c
5
y
5
+ 5y
4
+ 7y
3
8y
2
+ 13y 1
c
11
y
5
6y
4
+ 7y
3
15y
2
5y 49
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.233174
b = 1.70062
3.15723 0.962290
u = 0.309916 + 0.549911I
a = 1.33911 0.82238I
b = 0.896438 0.890762I
0.98673 3.06116I 0.96977 + 8.86130I
u = 0.309916 0.549911I
a = 1.33911 + 0.82238I
b = 0.896438 + 0.890762I
0.98673 + 3.06116I 0.96977 8.86130I
u = 1.41878 + 0.21917I
a = 0.544303 1.200150I
b = 0.453870 + 0.402731I
10.10020 + 8.80167I 7.48863 6.99717I
u = 1.41878 0.21917I
a = 0.544303 + 1.200150I
b = 0.453870 0.402731I
10.10020 8.80167I 7.48863 + 6.99717I
21
V.
I
u
5
= hu
4
u
2
+ b u 1, u
4
2u
3
u
2
+ a + 2u, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
u
4
+ 2u
3
+ u
2
2u
u
4
+ u
2
+ u + 1
a
11
=
2u
3
3u 1
u
4
+ u
2
+ u + 1
a
8
=
u
3
+ 3u 1
1
a
5
=
2u
3
+ 2u
2
+ u 1
u
4
u
2
u 1
a
1
=
u
3
u
2
u 1
u
4
+ u
3
u
2
u 1
a
9
=
u
3
3u
u
4
+ u
3
u
2
u
a
12
=
u
4
+ u
3
+ 2u
2
u 1
u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 16u + 6
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
5
2u
4
+ 3u
3
+ u
2
3u + 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
, c
7
u
5
+ u
4
u
3
4u
2
3u 1
c
5
u
5
+ 6u
4
+ 15u
3
+ 21u
2
+ 17u + 7
c
11
u
5
+ u
4
+ 3u
3
+ 6u
2
+ 5u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
5
+ 2y
4
+ 7y
3
15y
2
+ 7y 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
5
5y
4
+ 8y
3
3y
2
y 1
c
4
, c
7
y
5
3y
4
+ 3y
3
8y
2
+ y 1
c
5
y
5
6y
4
+ 7y
3
15y
2
5y 49
c
11
y
5
+ 5y
4
+ 7y
3
8y
2
+ 13y 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.89210
b = 0.933791
3.15723 0.962290
u = 0.309916 + 0.549911I
a = 0.98986 1.59703I
b = 0.557328 + 0.068387I
0.98673 3.06116I 0.96977 + 8.86130I
u = 0.309916 0.549911I
a = 0.98986 + 1.59703I
b = 0.557328 0.068387I
0.98673 + 3.06116I 0.96977 8.86130I
u = 1.41878 + 0.21917I
a = 0.956194 + 0.365575I
b = 0.90957 1.60288I
10.10020 + 8.80167I 7.48863 6.99717I
u = 1.41878 0.21917I
a = 0.956194 0.365575I
b = 0.90957 + 1.60288I
10.10020 8.80167I 7.48863 + 6.99717I
25
VI. I
u
6
= h8u
25
a 29u
25
+ · · · + 24a + 58, 31u
25
a 5u
25
+ · · · 138a +
42, u
26
2u
25
+ · · · 6u + 2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
10
=
a
2u
25
a +
29
4
u
25
+ ··· 6a
29
2
a
11
=
2u
25
a
29
4
u
25
+ ··· + 7a +
29
2
2u
25
a +
29
4
u
25
+ ··· 6a
29
2
a
8
=
29
4
u
25
a
11
2
u
25
+ ···
29
2
a 15
1
a
5
=
19
4
u
25
a
3
4
u
25
+ ···
31
2
a +
5
2
13
4
u
25
a + 3u
25
+ ··· +
3
2
a + 11
a
1
=
4u
25
a
11
2
u
25
+ ··· + 10a 15
9
4
u
25
a +
9
4
u
25
+ ···
1
2
a +
9
2
a
9
=
1
2
u
25
a +
13
4
u
25
+ ··· 6a +
19
2
3
4
u
25
a +
3
2
u
25
+ ···
9
2
a + 5
a
12
=
2u
25
a
25
4
u
25
+ ··· + 7a +
11
2
2u
25
a +
13
2
u
25
+ ··· 6a 10
(ii) Obstruction class = 1
(iii) Cusp Shapes =
63
4
u
25
+
89
4
u
24
+ ··· 44u +
169
2
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
52
+ 11u
50
+ ··· + 733u + 337
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(u
26
+ 2u
25
+ ··· + 6u + 2)
2
c
5
, c
11
(u
26
u
25
+ ··· + 35u + 49)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
52
+ 22y
51
+ ··· + 1455729y + 113569
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(y
26
28y
25
+ ··· 100y + 4)
2
c
5
, c
11
(y
26
15y
25
+ ··· 35721y + 2401)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.553208 + 0.775217I
a = 1.088170 + 0.312005I
b = 0.524604 + 0.662614I
1.77293 2.59129I 14.3131 + 5.4801I
u = 0.553208 + 0.775217I
a = 0.417434 0.520810I
b = 0.211040 0.742494I
1.77293 2.59129I 14.3131 + 5.4801I
u = 0.553208 0.775217I
a = 1.088170 0.312005I
b = 0.524604 0.662614I
1.77293 + 2.59129I 14.3131 5.4801I
u = 0.553208 0.775217I
a = 0.417434 + 0.520810I
b = 0.211040 + 0.742494I
1.77293 + 2.59129I 14.3131 5.4801I
u = 0.603297 + 0.868786I
a = 0.128987 + 0.870481I
b = 0.008992 + 0.944934I
8.28659 2.89485I 12.44020 + 3.54073I
u = 0.603297 + 0.868786I
a = 1.337050 0.449840I
b = 0.616963 0.787628I
8.28659 2.89485I 12.44020 + 3.54073I
u = 0.603297 0.868786I
a = 0.128987 0.870481I
b = 0.008992 0.944934I
8.28659 + 2.89485I 12.44020 3.54073I
u = 0.603297 0.868786I
a = 1.337050 + 0.449840I
b = 0.616963 + 0.787628I
8.28659 + 2.89485I 12.44020 3.54073I
u = 0.943425 + 0.499174I
a = 0.694495 0.686286I
b = 0.366066 0.740622I
6.88770 + 1.05584I 11.25609 1.96387I
u = 0.943425 + 0.499174I
a = 1.217920 + 0.300873I
b = 0.872153 + 0.173136I
6.88770 + 1.05584I 11.25609 1.96387I
29
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.943425 0.499174I
a = 0.694495 + 0.686286I
b = 0.366066 + 0.740622I
6.88770 1.05584I 11.25609 + 1.96387I
u = 0.943425 0.499174I
a = 1.217920 0.300873I
b = 0.872153 0.173136I
6.88770 1.05584I 11.25609 + 1.96387I
u = 0.245040 + 0.733784I
a = 1.15177 + 1.09789I
b = 0.733903 + 1.126320I
4.78648 5.46357I 4.53204 + 6.67901I
u = 0.245040 + 0.733784I
a = 1.77194 + 0.87563I
b = 0.773003 0.171756I
4.78648 5.46357I 4.53204 + 6.67901I
u = 0.245040 0.733784I
a = 1.15177 1.09789I
b = 0.733903 1.126320I
4.78648 + 5.46357I 4.53204 6.67901I
u = 0.245040 0.733784I
a = 1.77194 0.87563I
b = 0.773003 + 0.171756I
4.78648 + 5.46357I 4.53204 6.67901I
u = 0.692554
a = 1.32857
b = 0.584521
0.329189 14.3490
u = 0.692554
a = 1.57517
b = 1.09426
0.329189 14.3490
u = 0.547551
a = 1.68040
b = 1.23037
0.329189 14.3490
u = 0.547551
a = 1.99230
b = 0.501158
0.329189 14.3490
30
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.45899 + 0.14778I
a = 0.037244 + 1.042010I
b = 0.145904 0.472929I
4.78648 + 5.46357I 4.53204 6.67901I
u = 1.45899 + 0.14778I
a = 0.777632 0.316112I
b = 1.20223 + 1.53623I
4.78648 + 5.46357I 4.53204 6.67901I
u = 1.45899 0.14778I
a = 0.037244 1.042010I
b = 0.145904 + 0.472929I
4.78648 5.46357I 4.53204 + 6.67901I
u = 1.45899 0.14778I
a = 0.777632 + 0.316112I
b = 1.20223 1.53623I
4.78648 5.46357I 4.53204 + 6.67901I
u = 0.491328 + 0.130745I
a = 1.98866 0.35148I
b = 0.565063 1.196090I
8.64852 + 6.39232I 13.2062 6.3296I
u = 0.491328 + 0.130745I
a = 2.96644 + 0.81564I
b = 0.477569 0.943122I
8.64852 + 6.39232I 13.2062 6.3296I
u = 0.491328 0.130745I
a = 1.98866 + 0.35148I
b = 0.565063 + 1.196090I
8.64852 6.39232I 13.2062 + 6.3296I
u = 0.491328 0.130745I
a = 2.96644 0.81564I
b = 0.477569 + 0.943122I
8.64852 6.39232I 13.2062 + 6.3296I
u = 1.50128 + 0.07571I
a = 0.633748 0.625993I
b = 0.226697 + 0.451550I
6.88770 + 1.05584I 11.25609 1.96387I
u = 1.50128 + 0.07571I
a = 0.673013 + 0.166410I
b = 1.53145 1.12805I
6.88770 + 1.05584I 11.25609 1.96387I
31
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.50128 0.07571I
a = 0.633748 + 0.625993I
b = 0.226697 0.451550I
6.88770 1.05584I 11.25609 + 1.96387I
u = 1.50128 0.07571I
a = 0.673013 0.166410I
b = 1.53145 + 1.12805I
6.88770 1.05584I 11.25609 + 1.96387I
u = 1.50898 + 0.02041I
a = 0.801385 + 0.579109I
b = 0.83666 1.26270I
8.28659 2.89485I 12.44020 + 3.54073I
u = 1.50898 + 0.02041I
a = 0.548938 + 0.281185I
b = 1.00115 1.65322I
8.28659 2.89485I 12.44020 + 3.54073I
u = 1.50898 0.02041I
a = 0.801385 0.579109I
b = 0.83666 + 1.26270I
8.28659 + 2.89485I 12.44020 3.54073I
u = 1.50898 0.02041I
a = 0.548938 0.281185I
b = 1.00115 + 1.65322I
8.28659 + 2.89485I 12.44020 3.54073I
u = 1.53064 + 0.05712I
a = 1.125240 0.491051I
b = 1.04497 + 1.04117I
15.5113 7.1776I 13.07799 + 4.48831I
u = 1.53064 + 0.05712I
a = 0.603671 0.025101I
b = 1.29543 + 1.62004I
15.5113 7.1776I 13.07799 + 4.48831I
u = 1.53064 0.05712I
a = 1.125240 + 0.491051I
b = 1.04497 1.04117I
15.5113 + 7.1776I 13.07799 4.48831I
u = 1.53064 0.05712I
a = 0.603671 + 0.025101I
b = 1.29543 1.62004I
15.5113 + 7.1776I 13.07799 4.48831I
32
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.54568 + 0.26203I
a = 0.933615 + 0.351925I
b = 0.897541 1.028160I
8.64852 + 6.39232I 13.2062 6.3296I
u = 1.54568 + 0.26203I
a = 0.631712 0.172853I
b = 0.482731 + 1.227480I
8.64852 + 6.39232I 13.2062 6.3296I
u = 1.54568 0.26203I
a = 0.933615 0.351925I
b = 0.897541 + 1.028160I
8.64852 6.39232I 13.2062 + 6.3296I
u = 1.54568 0.26203I
a = 0.631712 + 0.172853I
b = 0.482731 1.227480I
8.64852 6.39232I 13.2062 + 6.3296I
u = 0.416447 + 0.057781I
a = 1.50682 0.12386I
b = 0.392920 + 1.238970I
1.77293 + 2.59129I 14.3131 5.4801I
u = 0.416447 + 0.057781I
a = 2.20737 1.30490I
b = 0.334074 + 0.982377I
1.77293 + 2.59129I 14.3131 5.4801I
u = 0.416447 0.057781I
a = 1.50682 + 0.12386I
b = 0.392920 1.238970I
1.77293 2.59129I 14.3131 + 5.4801I
u = 0.416447 0.057781I
a = 2.20737 + 1.30490I
b = 0.334074 0.982377I
1.77293 2.59129I 14.3131 + 5.4801I
u = 1.59092 + 0.28889I
a = 1.121140 0.309256I
b = 1.08933 + 0.96858I
15.5113 + 7.1776I 13.07799 4.48831I
u = 1.59092 + 0.28889I
a = 0.562694 0.104657I
b = 0.32542 1.43702I
15.5113 + 7.1776I 13.07799 4.48831I
33
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.59092 0.28889I
a = 1.121140 + 0.309256I
b = 1.08933 0.96858I
15.5113 7.1776I 13.07799 + 4.48831I
u = 1.59092 0.28889I
a = 0.562694 + 0.104657I
b = 0.32542 + 1.43702I
15.5113 7.1776I 13.07799 + 4.48831I
34
VII. I
u
7
= hb u, u
2
+ a 2u, u
3
2u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
2u
2
+ 2u 1
a
4
=
u
2
+ 1
u
2
u + 2
a
10
=
u
2
+ 2u
u
a
11
=
u
2
+ u
u
a
8
=
u
2
+ 1
3u
2
+ 2u 1
a
5
=
u
2
+ u + 1
u
2
+ 2u
a
1
=
2u
2
4u + 2
u
2
3u + 2
a
9
=
u
2
4u + 2
2u
2
4u + 3
a
12
=
2u
2
+ 3u 2
3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
+ 3u + 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
3
2u
2
+ 3u 1
c
2
, c
3
u
3
2u
2
+ u 1
c
5
, c
11
u
3
u
2
+ 1
c
6
, c
7
, c
10
u
3
+ 2u
2
+ u + 1
c
8
, c
9
u
3
u
2
4u + 5
c
12
u
3
+ u
2
4u 5
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
3
+ 2y
2
+ 5y 1
c
2
, c
3
, c
6
c
7
, c
10
y
3
2y
2
3y 1
c
5
, c
11
y
3
y
2
+ 2y 1
c
8
, c
9
, c
12
y
3
9y
2
+ 26y 25
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.122561 + 0.744862I
a = 0.78492 + 1.30714I
b = 0.122561 + 0.744862I
7.11122 5.65624I 9.12890 + 3.33008I
u = 0.122561 0.744862I
a = 0.78492 1.30714I
b = 0.122561 0.744862I
7.11122 + 5.65624I 9.12890 3.33008I
u = 1.75488
a = 0.430160
b = 1.75488
15.3864 35.7420
38
VIII. I
u
8
= h−2u
2
+ b u + 7, 3u
2
+ 5a + 2u 7, u
3
u
2
4u + 5i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
2
3u + 5
a
4
=
u
2
+ 1
3u
2
u 5
a
10
=
3
5
u
2
2
5
u +
7
5
2u
2
+ u 7
a
11
=
13
5
u
2
7
5
u +
42
5
2u
2
+ u 7
a
8
=
11
5
u
2
4
5
u +
29
5
2u
2
u 4
a
5
=
6
5
u
2
4
5
u +
19
5
u
2
+ u 4
a
1
=
1
5
u
2
1
5
u +
1
5
u 1
a
9
=
4
5
u
2
6
5
u +
16
5
u
2
+ 2u 6
a
12
=
3
5
u
2
+
3
5
u +
7
5
2u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
9u + 30
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
u
3
+ 2u
2
+ u + 1
c
2
, c
3
u
3
u
2
4u + 5
c
5
, c
11
u
3
u
2
+ 1
c
6
u
3
+ u
2
4u 5
c
7
, c
10
u
3
2u
2
+ 3u 1
c
8
, c
9
u
3
2u
2
+ u 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
9
, c
12
y
3
2y
2
3y 1
c
2
, c
3
, c
6
y
3
9y
2
+ 26y 25
c
5
, c
11
y
3
y
2
+ 2y 1
c
7
, c
10
y
3
+ 2y
2
+ 5y 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.53980 + 0.18258I
a = 0.618504 0.410401I
b = 0.78492 + 1.30714I
7.11122 + 5.65624I 9.12890 3.33008I
u = 1.53980 0.18258I
a = 0.618504 + 0.410401I
b = 0.78492 1.30714I
7.11122 5.65624I 9.12890 + 3.33008I
u = 2.07960
a = 0.362993
b = 0.430160
15.3864 35.7420
42
IX. I
u
9
= hb
2
+ bu + u, a + u 1, u
2
u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u 1
a
7
=
u
u 1
a
4
=
u
u
a
10
=
u + 1
b
a
11
=
b u + 1
b
a
8
=
bu b + 1
1
a
5
=
u + 1
b + u
a
1
=
bu b + 2
bu 1
a
9
=
b + u + 1
bu u
a
12
=
b 2u + 1
b + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
+ u
3
2u 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(u
2
+ u 1)
2
c
5
, c
11
(u 1)
4
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
y
3
+ 2y
2
4y + 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
(y
2
3y + 1)
2
c
5
, c
11
(y 1)
4
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 1.15372
0.328987 14.0000
u = 0.618034
a = 1.61803
b = 0.535687
0.328987 14.0000
u = 1.61803
a = 0.618034
b = 0.809017 + 0.981593I
16.1204 14.0000
u = 1.61803
a = 0.618034
b = 0.809017 0.981593I
16.1204 14.0000
46
X. I
u
10
= hb 1, a
4
2a
3
a
2
+ 2a 1, u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
7
=
1
0
a
4
=
0
1
a
10
=
a
1
a
11
=
a 1
1
a
8
=
a
1
a
5
=
a
2
a 1
a
1
=
a
3
+ a
2
+ 1
a
2
+ 2a 1
a
9
=
a
3
+ 2a
2
a 1
a
3
3a
2
+ a + 1
a
12
=
a 1
a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
47
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
+ 2u
3
u
2
2u 1
c
2
, c
3
, c
7
c
10
(u + 1)
4
c
5
, c
11
u
4
2u
3
u
2
+ 2u 1
c
6
(u 1)
4
c
8
, c
9
, c
12
(u
2
2)
2
48
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
11
y
4
6y
3
+ 7y
2
2y + 1
c
2
, c
3
, c
6
c
7
, c
10
(y 1)
4
c
8
, c
9
, c
12
(y 2)
4
49
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.13224
b = 1.00000
4.93480 8.00000
u = 1.00000
a = 0.500000 + 0.405233I
b = 1.00000
4.93480 8.00000
u = 1.00000
a = 0.500000 0.405233I
b = 1.00000
4.93480 8.00000
u = 1.00000
a = 2.13224
b = 1.00000
4.93480 8.00000
50
XI. I
u
11
= h−au + b 1, 2a
2
+ au u 1, u
2
2i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
2
a
7
=
u
u
a
4
=
1
0
a
10
=
a
au + 1
a
11
=
au + a 1
au + 1
a
8
=
a +
1
2
u
1
a
5
=
a
1
2
u 1
1
a
1
=
a
1
2
u
1
a
9
=
1
2
u
au + 2
a
12
=
a
au + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
51
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
c
9
(u + 1)
4
c
2
, c
3
, c
6
(u
2
2)
2
c
5
, c
11
u
4
2u
3
u
2
+ 2u 1
c
7
, c
10
u
4
+ 2u
3
u
2
2u 1
c
12
(u 1)
4
52
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
9
, c
12
(y 1)
4
c
2
, c
3
, c
6
(y 2)
4
c
5
, c
7
, c
10
c
11
y
4
6y
3
+ 7y
2
2y + 1
53
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.800616
b = 2.13224
4.93480 8.00000
u = 1.41421
a = 1.50772
b = 1.13224
4.93480 8.00000
u = 1.41421
a = 0.353553 + 0.286543I
b = 0.500000 0.405233I
4.93480 8.00000
u = 1.41421
a = 0.353553 0.286543I
b = 0.500000 + 0.405233I
4.93480 8.00000
54
XII. I
u
12
= hb + 1, a
2
+ a 1, u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
7
=
1
0
a
4
=
0
1
a
10
=
a
1
a
11
=
a + 1
1
a
8
=
a
1
a
5
=
a + 1
a 1
a
1
=
a + 1
a 2
a
9
=
a
1
a
12
=
a + 1
a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
55
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
11
u
2
+ u 1
c
2
, c
3
(u + 1)
2
c
6
, c
7
, c
10
(u 1)
2
c
8
, c
9
, c
12
u
2
56
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
11
y
2
3y + 1
c
2
, c
3
, c
6
c
7
, c
10
(y 1)
2
c
8
, c
9
, c
12
y
2
57
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 1.00000
0 10.0000
u = 1.00000
a = 1.61803
b = 1.00000
0 10.0000
58
XIII. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
3
=
1
0
a
7
=
1
0
a
4
=
1
0
a
10
=
0
1
a
11
=
1
1
a
8
=
0
1
a
5
=
1
1
a
1
=
0
1
a
9
=
0
1
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
59
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
10
, c
11
u + 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
u
60
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
10
, c
11
y 1
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
61
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
62
XIV. I
v
2
= ha, b + v 2, v
2
3v + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
v
0
a
3
=
1
0
a
7
=
v
0
a
4
=
1
0
a
10
=
0
v + 2
a
11
=
v 2
v + 2
a
8
=
v 1
1
a
5
=
v
1
a
1
=
v + 1
1
a
9
=
v 1
v + 3
a
12
=
0
v + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
63
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
12
(u 1)
2
c
2
, c
3
, c
6
u
2
c
5
, c
7
, c
10
c
11
u
2
+ u 1
c
8
, c
9
(u + 1)
2
64
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
9
, c
12
(y 1)
2
c
2
, c
3
, c
6
y
2
c
5
, c
7
, c
10
c
11
y
2
3y + 1
65
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
0 10.0000
v = 2.61803
a = 0
b = 0.618034
0 10.0000
66
XV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
((u 1)
2
)(u + 1)
5
(u
2
+ u 1)(u
3
2u
2
+ 3u 1)(u
3
+ 2u
2
+ u + 1)
· (u
4
+ u
3
2u 1)(u
4
+ 2u
3
u
2
2u 1)(u
5
2u
4
+ ··· 3u + 1)
· (u
5
+ u
4
u
3
4u
2
3u 1)(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
· (u
12
u
11
+ ··· + 3u 1)(u
26
3u
25
+ ··· + 10u 1)
· (u
52
+ 11u
50
+ ··· + 733u + 337)
c
2
, c
3
, c
8
c
9
u
3
(u + 1)
6
(u
2
2)
2
(u
2
+ u 1)
2
(u
3
2u
2
+ u 1)(u
3
u
2
4u + 5)
· (u
5
u
4
2u
3
+ u
2
+ u + 1)(u
5
+ u
4
2u
3
u
2
+ u 1)
2
· (u
12
3u
11
+ ··· 3u + 3)(u
26
8u
25
+ ··· 15u + 5)
· (u
26
+ 2u
25
+ ··· + 6u + 2)
2
c
5
, c
11
((u 1)
4
)(u + 1)(u
2
+ u 1)
2
(u
3
u
2
+ 1)
2
(u
4
2u
3
+ ··· + 2u 1)
2
· (u
5
+ u
4
+ 3u
3
+ 6u
2
+ 5u + 1)(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
5
+ 6u
4
+ 15u
3
+ 21u
2
+ 17u + 7)(u
12
+ 6u
11
+ ··· 6u 4)
· ((u
13
3u
12
+ ··· 4u
2
+ 1)
2
)(u
26
u
25
+ ··· + 35u + 49)
2
c
6
, c
12
u
3
(u 1)
6
(u
2
2)
2
(u
2
+ u 1)
2
(u
3
+ u
2
4u 5)(u
3
+ 2u
2
+ u + 1)
· ((u
5
+ u
4
2u
3
u
2
+ u 1)
3
)(u
12
3u
11
+ ··· 3u + 3)
· (u
26
8u
25
+ ··· 15u + 5)(u
26
+ 2u
25
+ ··· + 6u + 2)
2
67
XVI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y 1)
7
(y
2
3y + 1)(y
3
2y
2
3y 1)(y
3
+ 2y
2
+ 5y 1)
· (y
4
6y
3
+ 7y
2
2y + 1)(y
4
y
3
+ 2y
2
4y + 1)
· (y
5
3y
4
+ 3y
3
8y
2
+ y 1)(y
5
+ 2y
4
+ 7y
3
15y
2
+ 7y 1)
· (y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
12
5y
11
+ ··· 17y + 1)
· (y
26
9y
25
+ ··· 58y + 1)(y
52
+ 22y
51
+ ··· + 1455729y + 113569)
c
2
, c
3
, c
6
c
8
, c
9
, c
12
y
3
(y 2)
4
(y 1)
6
(y
2
3y + 1)
2
(y
3
9y
2
+ 26y 25)
· (y
3
2y
2
3y 1)(y
5
5y
4
+ 8y
3
3y
2
y 1)
3
· (y
12
17y
11
+ ··· 45y + 9)(y
26
28y
25
+ ··· 435y + 25)
· (y
26
28y
25
+ ··· 100y + 4)
2
c
5
, c
11
(y 1)
5
(y
2
3y + 1)
2
(y
3
y
2
+ 2y 1)
2
· (y
4
6y
3
+ 7y
2
2y + 1)
2
(y
5
6y
4
+ 7y
3
15y
2
5y 49)
· (y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
5
+ 5y
4
+ 7y
3
8y
2
+ 13y 1)
· (y
12
6y
11
+ ··· 92y + 16)(y
13
7y
12
+ ··· + 8y 1)
2
· (y
26
15y
25
+ ··· 35721y + 2401)
2
68