12a
1214
(K12a
1214
)
A knot diagram
1
Linearized knot diagam
5 6 7 10 2 3 11 12 1 4 8 9
Solving Sequence
1,5
2 6 3
7,9
10 4 12 8 11
c
1
c
5
c
2
c
6
c
9
c
4
c
12
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, u
6
+ 5u
4
+ u
3
6u
2
+ a 2u, u
7
6u
5
u
4
+ 10u
3
+ 3u
2
3u + 1i
I
u
2
= hu
17
u
16
+ ··· + b + 1, u
17
3u
16
+ ··· + a + 5, u
18
2u
17
+ ··· + 5u + 1i
I
u
3
= hb + u, a + u, u
2
+ u 1i
I
u
4
= hb u 1, a u 1, u
2
+ u 1i
I
u
5
= hb + 1, a + 2, u 1i
* 5 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hb +u, u
6
+5u
4
+u
3
6u
2
+a2u, u
7
6u
5
u
4
+10u
3
+3u
2
3u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
3
2u
u
5
3u
3
+ u
a
9
=
u
6
5u
4
u
3
+ 6u
2
+ 2u
u
a
10
=
u
6
5u
4
u
3
+ 6u
2
+ 3u
u
a
4
=
u
4
3u
2
+ 1
u
6
4u
4
+ 3u
2
a
12
=
u
5
4u
3
u
2
+ 3u
u
2
a
8
=
u
4
+ 3u
2
+ 2u
u
3
u
a
11
=
u
3
+ u
2
+ 3u
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
+ 4u
5
12u
4
22u
3
+ 18u
2
+ 30u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u
7
6u
5
+ u
4
+ 10u
3
3u
2
3u 1
c
4
, c
10
u
7
4u
6
+ 11u
5
19u
4
+ 22u
3
20u
2
+ 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
7
12y
6
+ 56y
5
127y
4
+ 142y
3
67y
2
+ 3y 1
c
4
, c
10
y
7
+ 6y
6
+ 13y
5
21y
4
132y
3
200y
2
96y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.149610 + 0.279986I
a = 1.12909 + 0.89438I
b = 1.149610 0.279986I
9.53872 + 4.72092I 18.8644 4.7284I
u = 1.149610 0.279986I
a = 1.12909 0.89438I
b = 1.149610 + 0.279986I
9.53872 4.72092I 18.8644 + 4.7284I
u = 0.256916 + 0.244395I
a = 0.658925 + 1.198610I
b = 0.256916 0.244395I
0.398617 0.781295I 9.36937 + 8.81210I
u = 0.256916 0.244395I
a = 0.658925 1.198610I
b = 0.256916 + 0.244395I
0.398617 + 0.781295I 9.36937 8.81210I
u = 1.78027
a = 2.70935
b = 1.78027
13.9427 18.6250
u = 1.78282 + 0.11231I
a = 2.14269 + 0.85665I
b = 1.78282 0.11231I
8.72326 8.52438I 19.4535 + 3.0874I
u = 1.78282 0.11231I
a = 2.14269 0.85665I
b = 1.78282 + 0.11231I
8.72326 + 8.52438I 19.4535 3.0874I
5
II.
I
u
2
= hu
17
u
16
+ · · · + b + 1, u
17
3u
16
+ · · · + a + 5, u
18
2u
17
+ · · · + 5u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
3
2u
u
5
3u
3
+ u
a
9
=
u
17
+ 3u
16
+ ··· 3u 5
u
17
+ u
16
+ ··· + 2u 1
a
10
=
2u
16
u
15
+ ··· 5u 4
u
17
+ u
16
+ ··· + 2u 1
a
4
=
u
4
3u
2
+ 1
u
6
4u
4
+ 3u
2
a
12
=
u
16
+ u
15
+ ··· + 8u + 1
u
16
+ u
15
+ ··· + 5u + 1
a
8
=
u
10
+ 7u
8
16u
6
+ 2u
5
+ 13u
4
8u
3
3u
2
+ 6u 1
u
16
+ u
15
+ ··· + 4u + 1
a
11
=
2u
17
+ 2u
16
+ ··· + 4u 3
2u
17
+ u
16
+ ··· + 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
16
3u
15
28u
14
+ 27u
13
+ 96u
12
99u
11
137u
10
+ 200u
9
+
34u
8
233u
7
+ 113u
6
+ 107u
5
118u
4
+ 26u
3
+ 38u
2
18u 11
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u
18
+ 2u
17
+ ··· 5u + 1
c
4
, c
10
(u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 15u
5
+ 16u
4
+ 8u
3
+ 6u
2
3u 2)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
18
24y
17
+ ··· 39y + 1
c
4
, c
10
(y
9
+ 10y
8
+ 39y
7
+ 62y
6
13y
5
170y
4
178y
3
20y
2
+ 33y 4)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.099080 + 0.090870I
a = 0.384578 0.484468I
b = 0.375602 + 0.561098I
4.71196 + 1.85169I 15.8408 4.0347I
u = 1.099080 0.090870I
a = 0.384578 + 0.484468I
b = 0.375602 0.561098I
4.71196 1.85169I 15.8408 + 4.0347I
u = 0.404211 + 0.717214I
a = 0.242512 + 1.041630I
b = 1.76042 0.02141I
15.1195 2.3160I 16.2080 + 2.7069I
u = 0.404211 0.717214I
a = 0.242512 1.041630I
b = 1.76042 + 0.02141I
15.1195 + 2.3160I 16.2080 2.7069I
u = 1.18349
a = 2.74140
b = 1.71775
14.6766 17.6580
u = 1.187490 + 0.413479I
a = 1.70401 1.25443I
b = 1.77073 + 0.06860I
19.3766 + 6.2041I 18.9481 3.7555I
u = 1.187490 0.413479I
a = 1.70401 + 1.25443I
b = 1.77073 0.06860I
19.3766 6.2041I 18.9481 + 3.7555I
u = 0.703192
a = 0.770486
b = 0.187582
1.23204 6.62220
u = 0.375602 + 0.561098I
a = 0.227816 0.984272I
b = 1.099080 + 0.090870I
4.71196 1.85169I 15.8408 + 4.0347I
u = 0.375602 0.561098I
a = 0.227816 + 0.984272I
b = 1.099080 0.090870I
4.71196 + 1.85169I 15.8408 4.0347I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.394111
a = 2.82610
b = 1.63604
9.50074 2.72570
u = 1.63604
a = 0.680788
b = 0.394111
9.50074 2.72570
u = 1.71775
a = 1.88877
b = 1.18349
14.6766 17.6580
u = 1.76042 + 0.02141I
a = 0.478278 + 0.146184I
b = 0.404211 0.717214I
15.1195 2.3160I 16.2080 + 2.7069I
u = 1.76042 0.02141I
a = 0.478278 0.146184I
b = 0.404211 + 0.717214I
15.1195 + 2.3160I 16.2080 2.7069I
u = 1.77073 + 0.06860I
a = 1.41636 0.49822I
b = 1.187490 + 0.413479I
19.3766 6.2041I 18.9481 + 3.7555I
u = 1.77073 0.06860I
a = 1.41636 + 0.49822I
b = 1.187490 0.413479I
19.3766 + 6.2041I 18.9481 3.7555I
u = 0.187582
a = 2.88834
b = 0.703192
1.23204 6.62220
10
III. I
u
3
= hb + u, a + u, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
6
=
u
u + 1
a
3
=
u
u
a
7
=
1
0
a
9
=
u
u
a
10
=
0
u
a
4
=
0
u
a
12
=
u
u 1
a
8
=
1
u 1
a
11
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
10
u
2
c
5
, c
6
, c
11
c
12
u
2
u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
2
3y + 1
c
4
, c
10
y
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 0.618034
1.97392 20.0000
u = 1.61803
a = 1.61803
b = 1.61803
17.7653 20.0000
14
IV. I
u
4
= hb u 1, a u 1, u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
6
=
u
u + 1
a
3
=
u
u
a
7
=
1
0
a
9
=
u + 1
u + 1
a
10
=
0
u + 1
a
4
=
0
u
a
12
=
u 1
u 2
a
8
=
1
u 2
a
11
=
0
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
2
+ u 1
c
4
, c
10
u
2
c
5
, c
6
, c
11
c
12
u
2
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
y
2
3y + 1
c
4
, c
10
y
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 1.61803
9.86960 25.0000
u = 1.61803
a = 0.618034
b = 0.618034
9.86960 25.0000
18
V. I
u
5
= hb + 1, a + 2, u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
6
=
1
0
a
3
=
0
1
a
7
=
1
1
a
9
=
2
1
a
10
=
1
1
a
4
=
1
0
a
12
=
1
1
a
8
=
1
0
a
11
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
u + 1
c
4
, c
10
u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
4.93480 18.0000
22
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
(u + 1)(u
2
+ u 1)
2
(u
7
6u
5
+ u
4
+ 10u
3
3u
2
3u 1)
· (u
18
+ 2u
17
+ ··· 5u + 1)
c
4
, c
10
u
4
(u 1)(u
7
4u
6
+ 11u
5
19u
4
+ 22u
3
20u
2
+ 8u 4)
· (u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 15u
5
+ 16u
4
+ 8u
3
+ 6u
2
3u 2)
2
c
5
, c
6
, c
11
c
12
(u + 1)(u
2
u 1)
2
(u
7
6u
5
+ u
4
+ 10u
3
3u
2
3u 1)
· (u
18
+ 2u
17
+ ··· 5u + 1)
23
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
c
12
(y 1)(y
2
3y + 1)
2
· (y
7
12y
6
+ 56y
5
127y
4
+ 142y
3
67y
2
+ 3y 1)
· (y
18
24y
17
+ ··· 39y + 1)
c
4
, c
10
y
4
(y 1)(y
7
+ 6y
6
+ 13y
5
21y
4
132y
3
200y
2
96y 16)
· (y
9
+ 10y
8
+ 39y
7
+ 62y
6
13y
5
170y
4
178y
3
20y
2
+ 33y 4)
2
24