12a
1215
(K12a
1215
)
A knot diagram
1
Linearized knot diagam
5 6 7 10 2 11 4 12 1 3 8 9
Solving Sequence
8,12
9 1
4,10
5 7 3 11 6 2
c
8
c
12
c
9
c
4
c
7
c
3
c
11
c
6
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h8.53148 × 10
61
u
60
2.63560 × 10
62
u
59
+ ··· + 2.09325 × 10
62
b 3.25181 × 10
62
,
2.51402 × 10
63
u
60
+ 8.62823 × 10
63
u
59
+ ··· + 2.09325 × 10
62
a + 4.65225 × 10
63
, u
61
4u
60
+ ··· 2u + 1i
I
u
2
= hb + 1, a
2
+ 2a 1, u 1i
I
u
3
= hb 1, a 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h8.53×10
61
u
60
2.64×10
62
u
59
+· · ·+2.09×10
62
b3.25×10
62
, 2.51×
10
63
u
60
+8.63×10
63
u
59
+· · ·+2.09×10
62
a+4.65×10
63
, u
61
4u
60
+· · ·2u+1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
12.0101u
60
41.2193u
59
+ ··· + 70.6756u 22.2250
0.407570u
60
+ 1.25909u
59
+ ··· + 1.20398u + 1.55347
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
7.23475u
60
25.7491u
59
+ ··· + 71.7086u 14.2434
5.32045u
60
+ 17.2364u
59
+ ··· 2.23417u + 8.89499
a
7
=
12.4952u
60
42.3313u
59
+ ··· + 65.7255u 22.9269
0.0236838u
60
+ 0.0968098u
59
+ ··· + 2.88901u + 0.876791
a
3
=
1.23183u
60
+ 2.22698u
59
+ ··· + 10.3657u + 2.23332
1.82728u
60
+ 4.13641u
59
+ ··· 3.93849u + 1.46849
a
11
=
u
u
a
6
=
7.14430u
60
25.0978u
59
+ ··· + 62.9492u 15.2793
5.37461u
60
+ 17.3303u
59
+ ··· + 0.112788u + 8.52436
a
2
=
8.78259u
60
+ 27.8143u
59
+ ··· + 85.7450u + 9.78144
5.73116u
60
20.6175u
59
+ ··· + 6.59694u 9.06352
(ii) Obstruction class = 1
(iii) Cusp Shapes = 112.270u
60
+ 381.730u
59
+ ··· 78.0643u + 180.153
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
61
+ 5u
60
+ ··· 6u + 2
c
3
, c
7
u
61
2u
60
+ ··· 18u 1
c
4
u
61
+ 14u
60
+ ··· 20506u + 253751
c
6
u
61
16u
60
+ ··· 298u 71
c
8
, c
9
, c
11
c
12
u
61
+ 4u
60
+ ··· 2u 1
c
10
u
61
+ 2u
60
+ ··· + 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
61
67y
60
+ ··· + 68y 4
c
3
, c
7
y
61
34y
60
+ ··· + 206y 1
c
4
y
61
654y
60
+ ··· 751092018078y 64389570001
c
6
y
61
674y
60
+ ··· + 204818y 5041
c
8
, c
9
, c
11
c
12
y
61
74y
60
+ ··· 98y 1
c
10
y
61
+ 2y
60
+ ··· + 102y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.746185 + 0.718329I
a = 0.782846 + 0.678292I
b = 0.677631 + 0.453749I
7.75122 2.10321I 0
u = 0.746185 0.718329I
a = 0.782846 0.678292I
b = 0.677631 0.453749I
7.75122 + 2.10321I 0
u = 0.967076 + 0.398497I
a = 0.312053 + 0.858947I
b = 0.128262 + 0.982641I
10.05700 + 6.18751I 0
u = 0.967076 0.398497I
a = 0.312053 0.858947I
b = 0.128262 0.982641I
10.05700 6.18751I 0
u = 0.814186 + 0.491497I
a = 0.27925 + 1.52542I
b = 1.238410 + 0.560509I
0.54223 + 8.36059I 0
u = 0.814186 0.491497I
a = 0.27925 1.52542I
b = 1.238410 0.560509I
0.54223 8.36059I 0
u = 1.07507
a = 1.21685
b = 0.0908214
6.55025 0
u = 0.919328 + 0.600137I
a = 0.37668 1.39219I
b = 1.252060 0.562320I
6.64410 + 11.69040I 0
u = 0.919328 0.600137I
a = 0.37668 + 1.39219I
b = 1.252060 + 0.562320I
6.64410 11.69040I 0
u = 1.035030 + 0.370907I
a = 0.389492 0.314417I
b = 0.923451 + 0.227131I
0.586497 + 0.638281I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.035030 0.370907I
a = 0.389492 + 0.314417I
b = 0.923451 0.227131I
0.586497 0.638281I 0
u = 0.022074 + 0.884978I
a = 0.760719 + 0.081071I
b = 1.116060 + 0.470898I
3.89787 6.79256I 0
u = 0.022074 0.884978I
a = 0.760719 0.081071I
b = 1.116060 0.470898I
3.89787 + 6.79256I 0
u = 0.784824 + 0.190256I
a = 0.337219 1.157560I
b = 0.146848 1.059540I
2.79892 + 2.75782I 12.5719 8.9610I
u = 0.784824 0.190256I
a = 0.337219 + 1.157560I
b = 0.146848 + 1.059540I
2.79892 2.75782I 12.5719 + 8.9610I
u = 0.609495 + 0.503426I
a = 0.901420 0.967851I
b = 0.770857 0.254010I
0.88592 1.76991I 10.70286 + 7.10949I
u = 0.609495 0.503426I
a = 0.901420 + 0.967851I
b = 0.770857 + 0.254010I
0.88592 + 1.76991I 10.70286 7.10949I
u = 0.701647 + 0.311220I
a = 0.02710 1.68276I
b = 1.217220 0.602617I
1.19274 + 3.49963I 4.99930 7.32299I
u = 0.701647 0.311220I
a = 0.02710 + 1.68276I
b = 1.217220 + 0.602617I
1.19274 3.49963I 4.99930 + 7.32299I
u = 0.760212 + 0.073205I
a = 0.457673 0.810260I
b = 1.46334 0.51937I
5.23021 + 0.94975I 19.2405 6.6283I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.760212 0.073205I
a = 0.457673 + 0.810260I
b = 1.46334 + 0.51937I
5.23021 0.94975I 19.2405 + 6.6283I
u = 1.086370 + 0.613746I
a = 0.145908 + 0.115784I
b = 0.881548 0.426034I
7.18543 + 1.66168I 0
u = 1.086370 0.613746I
a = 0.145908 0.115784I
b = 0.881548 + 0.426034I
7.18543 1.66168I 0
u = 0.740049
a = 0.465551
b = 0.111226
1.28803 7.85780
u = 0.217246 + 0.690863I
a = 0.585924 + 0.057283I
b = 0.219547 0.599860I
6.43015 2.58923I 10.03195 + 2.41589I
u = 0.217246 0.690863I
a = 0.585924 0.057283I
b = 0.219547 + 0.599860I
6.43015 + 2.58923I 10.03195 2.41589I
u = 0.077144 + 0.695385I
a = 0.802000 + 0.155188I
b = 1.138390 0.392051I
2.78020 4.38394I 1.53700 + 6.52121I
u = 0.077144 0.695385I
a = 0.802000 0.155188I
b = 1.138390 + 0.392051I
2.78020 + 4.38394I 1.53700 6.52121I
u = 0.623061 + 0.152291I
a = 0.39384 + 3.45519I
b = 0.923865 + 0.057323I
0.488805 0.376151I 9.8390 11.6732I
u = 0.623061 0.152291I
a = 0.39384 3.45519I
b = 0.923865 0.057323I
0.488805 + 0.376151I 9.8390 + 11.6732I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.624285
a = 36.9272
b = 1.01546
4.28785 381.270
u = 1.38099
a = 0.737085
b = 1.32091
1.75297 0
u = 0.146537 + 0.414207I
a = 0.599805 0.923128I
b = 1.184330 + 0.269776I
2.80305 0.88629I 0.82315 2.43589I
u = 0.146537 0.414207I
a = 0.599805 + 0.923128I
b = 1.184330 0.269776I
2.80305 + 0.88629I 0.82315 + 2.43589I
u = 1.60938 + 0.03982I
a = 0.35124 1.78283I
b = 0.934436 0.284454I
7.29629 + 1.06963I 0
u = 1.60938 0.03982I
a = 0.35124 + 1.78283I
b = 0.934436 + 0.284454I
7.29629 1.06963I 0
u = 1.61455 + 0.13274I
a = 0.040334 + 1.272930I
b = 0.970713 + 0.461820I
8.57121 + 4.07733I 0
u = 1.61455 0.13274I
a = 0.040334 1.272930I
b = 0.970713 0.461820I
8.57121 4.07733I 0
u = 1.62277
a = 5.90882
b = 1.08441
12.2377 0
u = 1.62759 + 0.06997I
a = 0.77048 + 1.60057I
b = 1.33629 + 0.86263I
6.89593 4.83384I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62759 0.06997I
a = 0.77048 1.60057I
b = 1.33629 0.86263I
6.89593 + 4.83384I 0
u = 1.64847 + 0.04117I
a = 0.30494 + 1.78899I
b = 0.22966 + 1.43807I
11.30720 3.57722I 0
u = 1.64847 0.04117I
a = 0.30494 1.78899I
b = 0.22966 1.43807I
11.30720 + 3.57722I 0
u = 1.64947 + 0.01439I
a = 1.12320 + 0.98345I
b = 1.74629 + 0.70290I
13.72070 1.24651I 0
u = 1.64947 0.01439I
a = 1.12320 0.98345I
b = 1.74629 0.70290I
13.72070 + 1.24651I 0
u = 1.65001 + 0.13394I
a = 0.50978 1.60334I
b = 1.31764 0.70879I
7.91826 10.72950I 0
u = 1.65001 0.13394I
a = 0.50978 + 1.60334I
b = 1.31764 + 0.70879I
7.91826 + 10.72950I 0
u = 0.123537 + 0.319863I
a = 1.021060 0.481385I
b = 0.014084 + 0.425125I
0.233943 0.995944I 4.40045 + 6.40501I
u = 0.123537 0.319863I
a = 1.021060 + 0.481385I
b = 0.014084 0.425125I
0.233943 + 0.995944I 4.40045 6.40501I
u = 1.65674 + 0.03555I
a = 0.362387 0.621120I
b = 0.449534 0.418699I
9.99487 + 0.25967I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.65674 0.03555I
a = 0.362387 + 0.621120I
b = 0.449534 + 0.418699I
9.99487 0.25967I 0
u = 1.67432 + 0.22629I
a = 0.020974 1.105390I
b = 0.981377 0.576312I
16.0070 + 5.8071I 0
u = 1.67432 0.22629I
a = 0.020974 + 1.105390I
b = 0.981377 + 0.576312I
16.0070 5.8071I 0
u = 1.68740 + 0.17394I
a = 0.34603 + 1.54557I
b = 1.34464 + 0.64636I
15.5798 14.7360I 0
u = 1.68740 0.17394I
a = 0.34603 1.54557I
b = 1.34464 0.64636I
15.5798 + 14.7360I 0
u = 1.69400 + 0.10712I
a = 0.32490 1.47775I
b = 0.139744 1.234560I
19.3348 8.1899I 0
u = 1.69400 0.10712I
a = 0.32490 + 1.47775I
b = 0.139744 + 1.234560I
19.3348 + 8.1899I 0
u = 1.73658 + 0.10391I
a = 0.204374 + 0.738826I
b = 0.512503 + 0.660988I
17.3526 + 1.0261I 0
u = 1.73658 0.10391I
a = 0.204374 0.738826I
b = 0.512503 0.660988I
17.3526 1.0261I 0
u = 0.0120702 + 0.1398260I
a = 1.36141 + 8.95063I
b = 0.949803 + 0.197306I
3.17091 0.11856I 2.06650 1.49742I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0120702 0.1398260I
a = 1.36141 8.95063I
b = 0.949803 0.197306I
3.17091 + 0.11856I 2.06650 + 1.49742I
11
II. I
u
2
= hb + 1, a
2
+ 2a 1, u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
a
1
a
10
=
0
1
a
5
=
a
a 1
a
7
=
a + 1
1
a
3
=
1
0
a
11
=
1
1
a
6
=
1
a + 1
a
2
=
a
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
2
2
c
3
, c
8
, c
9
(u 1)
2
c
4
u
2
+ 2u 1
c
6
u
2
2u 1
c
7
, c
10
, c
11
c
12
(u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 2)
2
c
3
, c
7
, c
8
c
9
, c
10
, c
11
c
12
(y 1)
2
c
4
, c
6
y
2
6y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.414214
b = 1.00000
4.93480 8.00000
u = 1.00000
a = 2.41421
b = 1.00000
4.93480 8.00000
15
III. I
u
3
= hb 1, a 1, u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
1
1
a
10
=
0
1
a
5
=
1
0
a
7
=
2
1
a
3
=
1
0
a
11
=
1
1
a
6
=
1
0
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
c
3
, c
11
, c
12
u + 1
c
4
, c
6
, c
7
c
8
, c
9
, c
10
u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
c
3
, c
4
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u(u
2
2)(u
61
+ 5u
60
+ ··· 6u + 2)
c
3
((u 1)
2
)(u + 1)(u
61
2u
60
+ ··· 18u 1)
c
4
(u 1)(u
2
+ 2u 1)(u
61
+ 14u
60
+ ··· 20506u + 253751)
c
6
(u 1)(u
2
2u 1)(u
61
16u
60
+ ··· 298u 71)
c
7
(u 1)(u + 1)
2
(u
61
2u
60
+ ··· 18u 1)
c
8
, c
9
((u 1)
3
)(u
61
+ 4u
60
+ ··· 2u 1)
c
10
(u 1)(u + 1)
2
(u
61
+ 2u
60
+ ··· + 2u 1)
c
11
, c
12
((u + 1)
3
)(u
61
+ 4u
60
+ ··· 2u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y(y 2)
2
(y
61
67y
60
+ ··· + 68y 4)
c
3
, c
7
((y 1)
3
)(y
61
34y
60
+ ··· + 206y 1)
c
4
(y 1)(y
2
6y + 1)
· (y
61
654y
60
+ ··· 751092018078y 64389570001)
c
6
(y 1)(y
2
6y + 1)(y
61
674y
60
+ ··· + 204818y 5041)
c
8
, c
9
, c
11
c
12
((y 1)
3
)(y
61
74y
60
+ ··· 98y 1)
c
10
((y 1)
3
)(y
61
+ 2y
60
+ ··· + 102y 1)
21