12a
1223
(K12a
1223
)
A knot diagram
1
Linearized knot diagam
5 6 8 10 2 11 12 4 1 3 7 9
Solving Sequence
6,11
7 12
3,8
2 5 1 10 4 9
c
6
c
11
c
7
c
2
c
5
c
1
c
10
c
4
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3.57598 × 10
170
u
85
+ 1.01646 × 10
170
u
84
+ ··· + 2.31147 × 10
171
b 4.59337 × 10
171
,
8.19062 × 10
171
u
85
+ 1.94837 × 10
172
u
84
+ ··· + 1.61803 × 10
172
a 2.37902 × 10
173
, u
86
+ 2u
85
+ ··· 43u 7i
I
u
2
= hu
7
4u
5
+ u
4
+ 4u
3
2u
2
+ b + 1,
u
15
9u
13
+ 2u
12
+ 31u
11
14u
10
48u
9
+ 36u
8
+ 26u
7
40u
6
+ 8u
5
+ 16u
4
8u
3
+ a,
u
18
u
17
+ ··· u + 1i
* 2 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.58 × 10
170
u
85
+ 1.02 × 10
170
u
84
+ · · · + 2.31 × 10
171
b 4.59 ×
10
171
, 8.19 × 10
171
u
85
+ 1.95 × 10
172
u
84
+ · · · + 1.62 × 10
172
a 2.38 ×
10
173
, u
86
+ 2u
85
+ · · · 43u 7i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
0.506210u
85
1.20416u
84
+ ··· + 19.3397u + 14.7032
0.154706u
85
0.0439746u
84
+ ··· + 0.0924782u + 1.98721
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.660916u
85
1.24814u
84
+ ··· + 19.4322u + 16.6904
0.154706u
85
0.0439746u
84
+ ··· + 0.0924782u + 1.98721
a
5
=
0.0356140u
85
+ 0.948982u
84
+ ··· 85.0217u 27.4994
1.04716u
85
0.439822u
84
+ ··· + 37.0962u + 3.37904
a
1
=
3.18148u
85
+ 2.79945u
84
+ ··· 96.9770u 29.8437
2.86152u
85
+ 1.39695u
84
+ ··· 91.4443u 18.0567
a
10
=
0.994047u
85
1.13219u
84
+ ··· + 98.6363u + 6.28721
0.776751u
85
0.662827u
84
+ ··· + 15.6810u + 7.57944
a
4
=
1.04225u
85
1.40402u
84
+ ··· + 33.9514u + 17.8765
0.397611u
85
0.156340u
84
+ ··· + 6.69560u + 3.09603
a
9
=
2.45518u
85
+ 1.64740u
84
+ ··· 104.010u 27.7858
2.48561u
85
+ 1.37154u
84
+ ··· 43.7893u 10.0526
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.959329u
85
0.908484u
84
+ ··· 101.771u 16.8438
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
86
+ 6u
85
+ ··· 158u + 47
c
3
, c
8
u
86
24u
84
+ ··· + 2u + 1
c
4
u
86
u
85
+ ··· 33283u + 13877
c
6
, c
7
, c
11
u
86
2u
85
+ ··· + 43u 7
c
9
, c
12
u
86
2u
85
+ ··· + 46u 1
c
10
u
86
+ 3u
85
+ ··· + 1643283u + 1221183
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
86
100y
85
+ ··· 128552y + 2209
c
3
, c
8
y
86
48y
85
+ ··· 36y + 1
c
4
y
86
+ 33y
85
+ ··· 67871217y + 192571129
c
6
, c
7
, c
11
y
86
92y
85
+ ··· 3039y + 49
c
9
, c
12
y
86
72y
85
+ ··· 8784y + 1
c
10
y
86
+ 45y
85
+ ··· + 22828629889629y + 1491287919489
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.789217 + 0.531072I
a = 0.333546 + 1.319880I
b = 1.57228 0.20818I
10.78230 + 6.15211I 0
u = 0.789217 0.531072I
a = 0.333546 1.319880I
b = 1.57228 + 0.20818I
10.78230 6.15211I 0
u = 0.504496 + 0.785795I
a = 0.224964 1.153010I
b = 0.630992 + 0.646745I
0.62218 8.31784I 0
u = 0.504496 0.785795I
a = 0.224964 + 1.153010I
b = 0.630992 0.646745I
0.62218 + 8.31784I 0
u = 0.693135 + 0.815814I
a = 0.560371 + 0.113537I
b = 0.469055 0.386035I
1.03113 + 2.97558I 0
u = 0.693135 0.815814I
a = 0.560371 0.113537I
b = 0.469055 + 0.386035I
1.03113 2.97558I 0
u = 0.555192 + 0.689225I
a = 0.52969 1.71387I
b = 1.48386 + 0.12467I
3.00766 + 5.60382I 0
u = 0.555192 0.689225I
a = 0.52969 + 1.71387I
b = 1.48386 0.12467I
3.00766 5.60382I 0
u = 0.796633 + 0.316728I
a = 1.116010 0.334984I
b = 0.528452 + 0.300147I
1.225560 + 0.382406I 0
u = 0.796633 0.316728I
a = 1.116010 + 0.334984I
b = 0.528452 0.300147I
1.225560 0.382406I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.555636 + 0.644693I
a = 0.736530 0.444696I
b = 1.44874 0.02658I
2.96973 0.99166I 0
u = 0.555636 0.644693I
a = 0.736530 + 0.444696I
b = 1.44874 + 0.02658I
2.96973 + 0.99166I 0
u = 0.213002 + 1.133890I
a = 0.989144 + 0.204843I
b = 1.53849 + 0.08270I
8.25387 0.91603I 0
u = 0.213002 1.133890I
a = 0.989144 0.204843I
b = 1.53849 0.08270I
8.25387 + 0.91603I 0
u = 0.666006 + 0.942281I
a = 0.480118 + 1.083050I
b = 1.56944 0.19659I
7.92614 11.41240I 0
u = 0.666006 0.942281I
a = 0.480118 1.083050I
b = 1.56944 + 0.19659I
7.92614 + 11.41240I 0
u = 1.17555
a = 1.35986
b = 1.06692
0.921670 0
u = 0.152567 + 0.809303I
a = 1.006560 + 0.126524I
b = 0.479008 0.309869I
1.40654 + 0.45091I 0
u = 0.152567 0.809303I
a = 1.006560 0.126524I
b = 0.479008 + 0.309869I
1.40654 0.45091I 0
u = 0.794490 + 0.120729I
a = 1.35076 + 1.02036I
b = 1.49966 + 0.07263I
7.85799 + 0.61029I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.794490 0.120729I
a = 1.35076 1.02036I
b = 1.49966 0.07263I
7.85799 0.61029I 0
u = 0.455465 + 0.649631I
a = 1.08140 1.18633I
b = 1.48458 + 0.06927I
6.18326 2.15194I 0
u = 0.455465 0.649631I
a = 1.08140 + 1.18633I
b = 1.48458 0.06927I
6.18326 + 2.15194I 0
u = 0.447792 + 0.591674I
a = 0.03198 + 1.54449I
b = 0.422429 0.502306I
3.23618 + 3.43219I 0. 7.59193I
u = 0.447792 0.591674I
a = 0.03198 1.54449I
b = 0.422429 + 0.502306I
3.23618 3.43219I 0. + 7.59193I
u = 0.728943
a = 0.704489
b = 0.348138
1.42668 5.68360
u = 0.732516 + 1.109930I
a = 0.518848 + 0.350147I
b = 1.53688 + 0.10163I
7.82387 + 4.66675I 0
u = 0.732516 1.109930I
a = 0.518848 0.350147I
b = 1.53688 0.10163I
7.82387 4.66675I 0
u = 0.639962
a = 1.66888
b = 0.425683
3.24162 7.90500
u = 0.448279 + 0.438995I
a = 0.814157 0.936435I
b = 0.463919 + 0.389009I
3.01283 + 0.20437I 1.047842 + 0.913639I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.448279 0.438995I
a = 0.814157 + 0.936435I
b = 0.463919 0.389009I
3.01283 0.20437I 1.047842 0.913639I
u = 0.301148 + 0.545313I
a = 0.049969 + 1.231930I
b = 0.351841 0.788610I
0.23561 3.61201I 3.68648 + 6.73668I
u = 0.301148 0.545313I
a = 0.049969 1.231930I
b = 0.351841 + 0.788610I
0.23561 + 3.61201I 3.68648 6.73668I
u = 1.378730 + 0.010185I
a = 0.225333 0.989484I
b = 0.532361 + 0.659791I
5.07390 + 2.06341I 0
u = 1.378730 0.010185I
a = 0.225333 + 0.989484I
b = 0.532361 0.659791I
5.07390 2.06341I 0
u = 0.550593 + 0.279146I
a = 0.050258 1.209990I
b = 0.657179 + 0.743375I
3.42725 + 2.76216I 11.9294 7.8140I
u = 0.550593 0.279146I
a = 0.050258 + 1.209990I
b = 0.657179 0.743375I
3.42725 2.76216I 11.9294 + 7.8140I
u = 1.378290 + 0.151019I
a = 0.051213 0.853728I
b = 0.555720 + 0.673304I
5.10950 + 2.50442I 0
u = 1.378290 0.151019I
a = 0.051213 + 0.853728I
b = 0.555720 0.673304I
5.10950 2.50442I 0
u = 1.42209 + 0.12454I
a = 0.33476 + 1.43001I
b = 1.53896 0.19132I
11.92440 + 5.10845I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42209 0.12454I
a = 0.33476 1.43001I
b = 1.53896 + 0.19132I
11.92440 5.10845I 0
u = 1.43671 + 0.10420I
a = 0.841755 1.016560I
b = 0.489916 + 0.093972I
6.58825 4.01957I 0
u = 1.43671 0.10420I
a = 0.841755 + 1.016560I
b = 0.489916 0.093972I
6.58825 + 4.01957I 0
u = 0.550897
a = 0.646774
b = 1.15486
2.44460 4.14310
u = 1.44643 + 0.10189I
a = 0.039747 + 0.577367I
b = 0.474440 0.652725I
2.94499 2.06223I 0
u = 1.44643 0.10189I
a = 0.039747 0.577367I
b = 0.474440 + 0.652725I
2.94499 + 2.06223I 0
u = 1.44932 + 0.15031I
a = 0.055491 0.603649I
b = 0.262382 + 1.153010I
5.46589 + 6.01776I 0
u = 1.44932 0.15031I
a = 0.055491 + 0.603649I
b = 0.262382 1.153010I
5.46589 6.01776I 0
u = 1.47482 + 0.01278I
a = 1.39413 1.35914I
b = 1.55105 + 0.02316I
13.62500 + 3.61708I 0
u = 1.47482 0.01278I
a = 1.39413 + 1.35914I
b = 1.55105 0.02316I
13.62500 3.61708I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48243 + 0.00101I
a = 0.547223 + 0.505995I
b = 1.84865 0.43880I
12.06140 1.11145I 0
u = 1.48243 0.00101I
a = 0.547223 0.505995I
b = 1.84865 + 0.43880I
12.06140 + 1.11145I 0
u = 1.49657 + 0.10349I
a = 0.577335 + 0.591255I
b = 1.58583 0.20548I
9.77886 1.28438I 0
u = 1.49657 0.10349I
a = 0.577335 0.591255I
b = 1.58583 + 0.20548I
9.77886 + 1.28438I 0
u = 1.50078 + 0.07624I
a = 0.287601 + 0.644186I
b = 0.938000 1.046720I
10.10640 4.04965I 0
u = 1.50078 0.07624I
a = 0.287601 0.644186I
b = 0.938000 + 1.046720I
10.10640 + 4.04965I 0
u = 1.49571 + 0.18966I
a = 0.442239 0.965539I
b = 0.528911 + 0.591680I
3.13918 6.25627I 0
u = 1.49571 0.18966I
a = 0.442239 + 0.965539I
b = 0.528911 0.591680I
3.13918 + 6.25627I 0
u = 1.47770 + 0.31519I
a = 0.241795 + 1.031910I
b = 1.55911 0.19231I
12.16490 + 5.62093I 0
u = 1.47770 0.31519I
a = 0.241795 1.031910I
b = 1.55911 + 0.19231I
12.16490 5.62093I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48644 + 0.31043I
a = 0.194147 + 0.776740I
b = 0.565736 0.086897I
6.86869 4.70358I 0
u = 1.48644 0.31043I
a = 0.194147 0.776740I
b = 0.565736 + 0.086897I
6.86869 + 4.70358I 0
u = 1.51990 + 0.26159I
a = 0.360201 + 0.874167I
b = 0.806729 0.781995I
7.21157 + 12.10600I 0
u = 1.51990 0.26159I
a = 0.360201 0.874167I
b = 0.806729 + 0.781995I
7.21157 12.10600I 0
u = 1.55340 + 0.22517I
a = 0.70812 + 1.46505I
b = 1.53653 0.16703I
9.98549 8.95683I 0
u = 1.55340 0.22517I
a = 0.70812 1.46505I
b = 1.53653 + 0.16703I
9.98549 + 8.95683I 0
u = 1.59072 + 0.16952I
a = 0.556696 0.964732I
b = 1.67598 + 0.27758I
18.6620 8.8164I 0
u = 1.59072 0.16952I
a = 0.556696 + 0.964732I
b = 1.67598 0.27758I
18.6620 + 8.8164I 0
u = 0.231835 + 0.323647I
a = 0.69062 + 1.23900I
b = 0.301055 0.322396I
0.206463 0.876909I 4.71593 + 7.65224I
u = 0.231835 0.323647I
a = 0.69062 1.23900I
b = 0.301055 + 0.322396I
0.206463 + 0.876909I 4.71593 7.65224I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60372 + 0.06660I
a = 0.307257 + 0.415115I
b = 0.536103 0.041755I
9.65329 + 0.15213I 0
u = 1.60372 0.06660I
a = 0.307257 0.415115I
b = 0.536103 + 0.041755I
9.65329 0.15213I 0
u = 1.63067
a = 0.612409
b = 0.508496
9.66712 0
u = 1.60323 + 0.30921I
a = 0.502737 1.166510I
b = 1.63933 + 0.24572I
15.3320 + 16.0041I 0
u = 1.60323 0.30921I
a = 0.502737 + 1.166510I
b = 1.63933 0.24572I
15.3320 16.0041I 0
u = 1.60103 + 0.45329I
a = 0.161139 0.880209I
b = 1.56979 + 0.01972I
14.2347 5.0655I 0
u = 1.60103 0.45329I
a = 0.161139 + 0.880209I
b = 1.56979 0.01972I
14.2347 + 5.0655I 0
u = 1.67558
a = 1.40435
b = 1.55197
16.7542 0
u = 0.140424 + 0.272759I
a = 3.81925 0.22914I
b = 0.428162 + 0.296323I
1.27530 + 2.62216I 8.64557 11.14295I
u = 0.140424 0.272759I
a = 3.81925 + 0.22914I
b = 0.428162 0.296323I
1.27530 2.62216I 8.64557 + 11.14295I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70594 + 0.15407I
a = 0.733525 0.538845I
b = 1.56345 + 0.01074I
16.9023 + 0.3370I 0
u = 1.70594 0.15407I
a = 0.733525 + 0.538845I
b = 1.56345 0.01074I
16.9023 0.3370I 0
u = 0.274418 + 0.016499I
a = 0.11655 + 2.14778I
b = 1.64428 0.30370I
6.03987 1.09293I 21.9287 + 6.9762I
u = 0.274418 0.016499I
a = 0.11655 2.14778I
b = 1.64428 + 0.30370I
6.03987 + 1.09293I 21.9287 6.9762I
u = 0.186864 + 0.089463I
a = 0.37438 + 9.46767I
b = 1.51710 + 0.07808I
7.83183 3.89836I 12.6530 + 7.2106I
u = 0.186864 0.089463I
a = 0.37438 9.46767I
b = 1.51710 0.07808I
7.83183 + 3.89836I 12.6530 7.2106I
13
II. I
u
2
=
hu
7
4u
5
+u
4
+4u
3
2u
2
+b+1, u
15
9u
13
+· · ·8u
3
+a, u
18
u
17
+· · ·u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
u
15
+ 9u
13
+ ··· 16u
4
+ 8u
3
u
7
+ 4u
5
u
4
4u
3
+ 2u
2
1
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
15
+ 9u
13
+ ··· + 2u
2
1
u
7
+ 4u
5
u
4
4u
3
+ 2u
2
1
a
5
=
u
14
+ 8u
12
+ ··· 2u + 1
u
14
+ 8u
12
+ ··· + 4u
2
1
a
1
=
u
17
10u
15
+ ··· + 3u 2
u
17
10u
15
+ ··· 6u
2
+ u
a
10
=
u
7
+ 4u
5
u
4
4u
3
+ 2u
2
u
9
+ 5u
7
u
6
7u
5
+ 3u
4
+ u
3
2u
2
+ 2u
a
4
=
u
15
u
14
+ ··· 22u
4
+ 4u
2
u
16
+ 9u
14
+ ··· + 2u
2
1
a
9
=
u
16
9u
14
+ ··· 3u + 1
u
16
9u
14
+ ··· + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
17
12u
15
+ 59u
13
7u
12
149u
11
+ 53u
10
+ 187u
9
146u
8
72u
7
+ 168u
6
52u
5
57u
4
+ 33u
3
14u
2
3u 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
18
u
17
+ ··· + 4u 1
c
3
u
18
+ u
17
+ ··· + 4u 1
c
4
u
18
+ 2u
16
+ ··· + 5u + 1
c
5
u
18
+ u
17
+ ··· 4u 1
c
6
, c
7
u
18
u
17
+ ··· u + 1
c
8
u
18
u
17
+ ··· 4u 1
c
9
u
18
+ 3u
17
+ ··· + 8u + 1
c
10
u
18
+ 2u
16
+ ··· 3u + 1
c
11
u
18
+ u
17
+ ··· + u + 1
c
12
u
18
3u
17
+ ··· 8u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
18
25y
17
+ ··· 6y + 1
c
3
, c
8
y
18
17y
17
+ ··· 30y + 1
c
4
y
18
+ 4y
17
+ ··· 11y + 1
c
6
, c
7
, c
11
y
18
21y
17
+ ··· + 3y + 1
c
9
, c
12
y
18
21y
17
+ ··· 126y + 1
c
10
y
18
+ 4y
17
+ ··· 17y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.04652
a = 1.35774
b = 0.929235
1.68470 2.89640
u = 0.421317 + 0.719343I
a = 0.88354 1.48981I
b = 1.49998 0.07412I
7.24260 + 3.06692I 6.84701 0.28152I
u = 0.421317 0.719343I
a = 0.88354 + 1.48981I
b = 1.49998 + 0.07412I
7.24260 3.06692I 6.84701 + 0.28152I
u = 0.736639
a = 0.280998
b = 1.05817
2.80594 18.8820
u = 0.710637
a = 1.48023
b = 0.557070
2.91571 17.3300
u = 0.335739 + 0.515313I
a = 0.362599 + 1.098660I
b = 0.228311 + 0.286762I
1.19486 + 1.88580I 7.38603 0.40266I
u = 0.335739 0.515313I
a = 0.362599 1.098660I
b = 0.228311 0.286762I
1.19486 1.88580I 7.38603 + 0.40266I
u = 1.41202 + 0.17279I
a = 0.303163 + 0.821591I
b = 0.090569 0.602651I
5.33102 4.37921I 7.08751 + 4.02776I
u = 1.41202 0.17279I
a = 0.303163 0.821591I
b = 0.090569 + 0.602651I
5.33102 + 4.37921I 7.08751 4.02776I
u = 1.41693 + 0.30832I
a = 0.098754 1.309610I
b = 1.49607 + 0.15929I
11.01080 6.88296I 10.04016 + 5.97512I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41693 0.30832I
a = 0.098754 + 1.309610I
b = 1.49607 0.15929I
11.01080 + 6.88296I 10.04016 5.97512I
u = 1.46458 + 0.10051I
a = 0.235538 0.626928I
b = 1.46470 + 0.46646I
10.68550 + 2.64083I 13.65203 2.66841I
u = 1.46458 0.10051I
a = 0.235538 + 0.626928I
b = 1.46470 0.46646I
10.68550 2.64083I 13.65203 + 2.66841I
u = 1.50471
a = 0.745312
b = 1.83585
12.2233 14.9920
u = 0.161184 + 0.384390I
a = 0.814554 0.868946I
b = 1.55890 0.19298I
5.66306 0.87639I 4.20175 2.57088I
u = 0.161184 0.384390I
a = 0.814554 + 0.868946I
b = 1.55890 + 0.19298I
5.66306 + 0.87639I 4.20175 + 2.57088I
u = 1.66215
a = 0.582630
b = 0.435772
9.48097 16.0990
u = 1.74253
a = 1.20647
b = 1.53636
16.2697 2.56890
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u
18
u
17
+ ··· + 4u 1)(u
86
+ 6u
85
+ ··· 158u + 47)
c
3
(u
18
+ u
17
+ ··· + 4u 1)(u
86
24u
84
+ ··· + 2u + 1)
c
4
(u
18
+ 2u
16
+ ··· + 5u + 1)(u
86
u
85
+ ··· 33283u + 13877)
c
5
(u
18
+ u
17
+ ··· 4u 1)(u
86
+ 6u
85
+ ··· 158u + 47)
c
6
, c
7
(u
18
u
17
+ ··· u + 1)(u
86
2u
85
+ ··· + 43u 7)
c
8
(u
18
u
17
+ ··· 4u 1)(u
86
24u
84
+ ··· + 2u + 1)
c
9
(u
18
+ 3u
17
+ ··· + 8u + 1)(u
86
2u
85
+ ··· + 46u 1)
c
10
(u
18
+ 2u
16
+ ··· 3u + 1)(u
86
+ 3u
85
+ ··· + 1643283u + 1221183)
c
11
(u
18
+ u
17
+ ··· + u + 1)(u
86
2u
85
+ ··· + 43u 7)
c
12
(u
18
3u
17
+ ··· 8u + 1)(u
86
2u
85
+ ··· + 46u 1)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
18
25y
17
+ ··· 6y + 1)(y
86
100y
85
+ ··· 128552y + 2209)
c
3
, c
8
(y
18
17y
17
+ ··· 30y + 1)(y
86
48y
85
+ ··· 36y + 1)
c
4
(y
18
+ 4y
17
+ ··· 11y + 1)
· (y
86
+ 33y
85
+ ··· 67871217y + 192571129)
c
6
, c
7
, c
11
(y
18
21y
17
+ ··· + 3y + 1)(y
86
92y
85
+ ··· 3039y + 49)
c
9
, c
12
(y
18
21y
17
+ ··· 126y + 1)(y
86
72y
85
+ ··· 8784y + 1)
c
10
(y
18
+ 4y
17
+ ··· 17y + 1)
· (y
86
+ 45y
85
+ ··· + 22828629889629y + 1491287919489)
20