12a
1224
(K12a
1224
)
A knot diagram
1
Linearized knot diagam
5 6 8 10 2 12 11 4 1 3 7 9
Solving Sequence
1,5
2 6
3,10
4 9 8 12 7 11
c
1
c
5
c
2
c
4
c
9
c
8
c
12
c
6
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.21800 × 10
175
u
86
+ 1.10072 × 10
176
u
85
+ ··· + 5.56542 × 10
175
b + 9.38658 × 10
176
,
2.03509 × 10
176
u
86
+ 9.22272 × 10
176
u
85
+ ··· + 5.56542 × 10
175
a + 3.49997 × 10
177
,
u
87
5u
86
+ ··· 31u 1i
I
u
2
= h3u
20
5u
19
+ ··· + b 2, 3u
20
+ 4u
19
+ ··· + a + 4, u
21
14u
19
+ ··· + u 1i
I
u
3
= hb + 1, u
5
+ 2u
4
+ 2u
3
4u
2
+ a u + 1, u
6
3u
5
+ 6u
3
4u
2
+ 1i
I
u
4
= hb + 1, a 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 115 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.22 × 10
175
u
86
+ 1.10 × 10
176
u
85
+ · · · + 5.57 × 10
175
b + 9.39 ×
10
176
, 2.04 × 10
176
u
86
+ 9.22 × 10
176
u
85
+ · · · + 5.57 × 10
175
a + 3.50 ×
10
177
, u
87
5u
86
+ · · · 31u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
3.65668u
86
16.5715u
85
+ ··· 1025.07u 62.8879
0.218852u
86
1.97778u
85
+ ··· 412.229u 16.8659
a
4
=
20.1258u
86
+ 100.004u
85
+ ··· + 3106.06u + 123.163
1.01692u
86
6.75872u
85
+ ··· 461.880u 22.8410
a
9
=
3.43783u
86
18.5492u
85
+ ··· 1437.30u 79.7538
0.218852u
86
1.97778u
85
+ ··· 412.229u 16.8659
a
8
=
20.7323u
86
106.664u
85
+ ··· 4060.99u 176.355
1.96351u
86
+ 8.22272u
85
+ ··· + 158.487u + 9.66986
a
12
=
21.5377u
86
+ 114.337u
85
+ ··· + 5556.14u + 273.143
1.30331u
86
0.885320u
85
+ ··· + 627.672u + 26.9509
a
7
=
3.73334u
86
+ 32.1426u
85
+ ··· + 2150.24u + 65.7851
8.70129u
86
35.1065u
85
+ ··· 562.970u 33.7329
a
11
=
3.49067u
86
18.8111u
85
+ ··· 1445.83u 79.7310
0.510581u
86
4.63816u
85
+ ··· 407.668u 16.8546
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.04694u
86
+ 31.0771u
85
+ ··· + 2704.70u + 109.774
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
87
+ 5u
86
+ ··· 31u + 1
c
3
, c
8
u
87
+ 2u
86
+ ··· + 1867u 1459
c
4
u
87
u
86
+ ··· 108842u + 15817
c
6
, c
7
, c
11
u
87
+ 2u
86
+ ··· 36u + 7
c
9
, c
12
u
87
9u
86
+ ··· + 784u 8
c
10
u
87
+ 3u
86
+ ··· + 619168u + 590297
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
87
91y
86
+ ··· + 301y 1
c
3
, c
8
y
87
64y
86
+ ··· + 35213103y 2128681
c
4
y
87
+ 33y
86
+ ··· + 197455366y 250177489
c
6
, c
7
, c
11
y
87
+ 90y
86
+ ··· + 2206y 49
c
9
, c
12
y
87
59y
86
+ ··· + 638432y 64
c
10
y
87
25y
86
+ ··· + 7264616979632y 348450548209
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.919570 + 0.341269I
a = 0.230219 1.291490I
b = 1.018910 + 0.767688I
4.92914 3.18573I 0
u = 0.919570 0.341269I
a = 0.230219 + 1.291490I
b = 1.018910 0.767688I
4.92914 + 3.18573I 0
u = 0.643376 + 0.795200I
a = 0.443359 0.859364I
b = 1.129980 + 0.180708I
3.41783 2.87585I 0
u = 0.643376 0.795200I
a = 0.443359 + 0.859364I
b = 1.129980 0.180708I
3.41783 + 2.87585I 0
u = 0.801927 + 0.529130I
a = 1.221220 0.403028I
b = 0.518441 + 0.530723I
8.78928 2.20079I 0
u = 0.801927 0.529130I
a = 1.221220 + 0.403028I
b = 0.518441 0.530723I
8.78928 + 2.20079I 0
u = 0.605395 + 0.915337I
a = 0.449296 1.181010I
b = 1.230940 + 0.562762I
6.97761 + 12.04090I 0
u = 0.605395 0.915337I
a = 0.449296 + 1.181010I
b = 1.230940 0.562762I
6.97761 12.04090I 0
u = 0.524939 + 0.728503I
a = 0.50181 + 1.52469I
b = 1.221130 0.467400I
0.17465 + 8.23740I 0
u = 0.524939 0.728503I
a = 0.50181 1.52469I
b = 1.221130 + 0.467400I
0.17465 8.23740I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.146280 + 0.016740I
a = 0.218153 + 1.254070I
b = 0.883487 0.824717I
5.16086 + 3.06951I 0
u = 1.146280 0.016740I
a = 0.218153 1.254070I
b = 0.883487 + 0.824717I
5.16086 3.06951I 0
u = 0.421925 + 0.731310I
a = 0.889218 + 0.084686I
b = 1.110590 + 0.288943I
0.35974 3.47491I 0
u = 0.421925 0.731310I
a = 0.889218 0.084686I
b = 1.110590 0.288943I
0.35974 + 3.47491I 0
u = 0.073826 + 0.813368I
a = 1.60062 + 0.49196I
b = 0.899591 0.403821I
7.79839 0.95510I 0
u = 0.073826 0.813368I
a = 1.60062 0.49196I
b = 0.899591 + 0.403821I
7.79839 + 0.95510I 0
u = 1.20375
a = 0.466459
b = 0.00998561
2.53324 0
u = 0.635177 + 1.044370I
a = 0.662353 0.064701I
b = 1.059810 0.347777I
7.02919 5.71442I 0
u = 0.635177 1.044370I
a = 0.662353 + 0.064701I
b = 1.059810 + 0.347777I
7.02919 + 5.71442I 0
u = 0.509200 + 1.127410I
a = 0.472655 + 0.551529I
b = 1.195790 0.258865I
1.51094 5.10157I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.509200 1.127410I
a = 0.472655 0.551529I
b = 1.195790 + 0.258865I
1.51094 + 5.10157I 0
u = 0.365776 + 0.653749I
a = 0.081284 + 1.401450I
b = 0.287242 1.062190I
10.02620 + 6.30984I 0
u = 0.365776 0.653749I
a = 0.081284 1.401450I
b = 0.287242 + 1.062190I
10.02620 6.30984I 0
u = 0.129351 + 0.704209I
a = 0.679190 0.828173I
b = 0.103762 + 0.686088I
5.33081 1.86604I 0. + 3.90648I
u = 0.129351 0.704209I
a = 0.679190 + 0.828173I
b = 0.103762 0.686088I
5.33081 + 1.86604I 0. 3.90648I
u = 1.223970 + 0.401442I
a = 0.462473 0.267648I
b = 0.073035 0.139352I
2.07456 2.27551I 0
u = 1.223970 0.401442I
a = 0.462473 + 0.267648I
b = 0.073035 + 0.139352I
2.07456 + 2.27551I 0
u = 1.263230 + 0.374502I
a = 0.746639 + 0.577828I
b = 0.860702 + 0.092884I
3.67205 + 5.24598I 0
u = 1.263230 0.374502I
a = 0.746639 0.577828I
b = 0.860702 0.092884I
3.67205 5.24598I 0
u = 0.266580 + 0.588131I
a = 1.35207 2.09086I
b = 1.122390 + 0.353863I
0.18453 + 2.81647I 0.56699 5.14375I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.266580 0.588131I
a = 1.35207 + 2.09086I
b = 1.122390 0.353863I
0.18453 2.81647I 0.56699 + 5.14375I
u = 0.383725 + 0.510780I
a = 0.35311 1.52762I
b = 0.127056 + 0.881304I
3.55177 + 3.39819I 0.84018 6.92415I
u = 0.383725 0.510780I
a = 0.35311 + 1.52762I
b = 0.127056 0.881304I
3.55177 3.39819I 0.84018 + 6.92415I
u = 0.631511
a = 0.479038
b = 1.15135
1.55302 7.94170
u = 1.382990 + 0.055539I
a = 0.565031 0.732391I
b = 0.238430 + 0.708558I
2.35948 0.82108I 0
u = 1.382990 0.055539I
a = 0.565031 + 0.732391I
b = 0.238430 0.708558I
2.35948 + 0.82108I 0
u = 1.375540 + 0.190726I
a = 0.047286 + 0.731163I
b = 0.378703 1.174100I
0.57233 + 4.93402I 0
u = 1.375540 0.190726I
a = 0.047286 0.731163I
b = 0.378703 + 1.174100I
0.57233 4.93402I 0
u = 1.391300 + 0.009231I
a = 0.421080 + 0.806075I
b = 1.57036 0.71094I
2.89241 + 2.70347I 0
u = 1.391300 0.009231I
a = 0.421080 0.806075I
b = 1.57036 + 0.71094I
2.89241 2.70347I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.491766 + 0.337151I
a = 1.52671 + 1.10854I
b = 0.131068 0.467644I
3.13228 0.27068I 1.77490 1.85357I
u = 0.491766 0.337151I
a = 1.52671 1.10854I
b = 0.131068 + 0.467644I
3.13228 + 0.27068I 1.77490 + 1.85357I
u = 1.41338 + 0.09716I
a = 1.63265 0.41394I
b = 1.024190 0.080144I
3.14701 + 6.03465I 0
u = 1.41338 0.09716I
a = 1.63265 + 0.41394I
b = 1.024190 + 0.080144I
3.14701 6.03465I 0
u = 1.42796 + 0.02959I
a = 0.701919 + 0.520870I
b = 1.53124 0.11552I
3.60289 2.95271I 0
u = 1.42796 0.02959I
a = 0.701919 0.520870I
b = 1.53124 + 0.11552I
3.60289 + 2.95271I 0
u = 1.43990 + 0.06670I
a = 0.012806 0.753944I
b = 0.183222 + 0.885034I
5.79294 + 2.10750I 0
u = 1.43990 0.06670I
a = 0.012806 + 0.753944I
b = 0.183222 0.885034I
5.79294 2.10750I 0
u = 1.43586 + 0.20746I
a = 0.41468 + 1.49380I
b = 1.226660 0.529473I
5.35379 5.68624I 0
u = 1.43586 0.20746I
a = 0.41468 1.49380I
b = 1.226660 + 0.529473I
5.35379 + 5.68624I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45502 + 0.14563I
a = 0.310433 + 0.637258I
b = 0.052332 1.193180I
2.41136 5.70802I 0
u = 1.45502 0.14563I
a = 0.310433 0.637258I
b = 0.052332 + 1.193180I
2.41136 + 5.70802I 0
u = 0.427368 + 0.306228I
a = 0.86564 + 1.62484I
b = 1.109570 0.540320I
1.27209 2.61374I 8.1476 + 11.5732I
u = 0.427368 0.306228I
a = 0.86564 1.62484I
b = 1.109570 + 0.540320I
1.27209 + 2.61374I 8.1476 11.5732I
u = 1.47311 + 0.21321I
a = 0.208305 0.640823I
b = 0.17007 + 1.45424I
4.02421 9.40391I 0
u = 1.47311 0.21321I
a = 0.208305 + 0.640823I
b = 0.17007 1.45424I
4.02421 + 9.40391I 0
u = 1.49510 + 0.04344I
a = 0.581323 + 0.412900I
b = 1.51105 0.29367I
8.12584 0.44534I 0
u = 1.49510 0.04344I
a = 0.581323 0.412900I
b = 1.51105 + 0.29367I
8.12584 + 0.44534I 0
u = 0.469577 + 0.132148I
a = 0.607127 + 0.383204I
b = 1.022440 0.664659I
2.30869 + 3.10979I 6.28767 + 0.10476I
u = 0.469577 0.132148I
a = 0.607127 0.383204I
b = 1.022440 + 0.664659I
2.30869 3.10979I 6.28767 0.10476I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51638 + 0.07781I
a = 0.311568 0.786453I
b = 1.38732 + 0.85466I
7.83146 + 3.89655I 0
u = 1.51638 0.07781I
a = 0.311568 + 0.786453I
b = 1.38732 0.85466I
7.83146 3.89655I 0
u = 1.54839 + 0.05770I
a = 0.443126 0.341427I
b = 1.47115 + 0.67450I
4.62587 3.85006I 0
u = 1.54839 0.05770I
a = 0.443126 + 0.341427I
b = 1.47115 0.67450I
4.62587 + 3.85006I 0
u = 1.52731 + 0.26111I
a = 0.475990 1.199960I
b = 1.36229 + 0.58251I
6.51610 11.88980I 0
u = 1.52731 0.26111I
a = 0.475990 + 1.199960I
b = 1.36229 0.58251I
6.51610 + 11.88980I 0
u = 1.54118 + 0.17061I
a = 0.318296 1.038990I
b = 1.170070 + 0.386041I
8.66512 + 2.45063I 0
u = 1.54118 0.17061I
a = 0.318296 + 1.038990I
b = 1.170070 0.386041I
8.66512 2.45063I 0
u = 0.277564 + 0.317493I
a = 0.560535 + 1.041500I
b = 0.079901 0.308666I
0.183792 0.864472I 4.29913 + 7.86972I
u = 0.277564 0.317493I
a = 0.560535 1.041500I
b = 0.079901 + 0.308666I
0.183792 + 0.864472I 4.29913 7.86972I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56054 + 0.25243I
a = 0.375410 + 0.928178I
b = 1.353380 0.393780I
10.60940 + 6.66212I 0
u = 1.56054 0.25243I
a = 0.375410 0.928178I
b = 1.353380 + 0.393780I
10.60940 6.66212I 0
u = 1.55851 + 0.35179I
a = 0.349517 0.886182I
b = 1.44084 + 0.41048I
5.19961 + 10.21640I 0
u = 1.55851 0.35179I
a = 0.349517 + 0.886182I
b = 1.44084 0.41048I
5.19961 10.21640I 0
u = 1.57773 + 0.32081I
a = 0.413286 + 1.072970I
b = 1.42145 0.65571I
0.1084 16.5867I 0
u = 1.57773 0.32081I
a = 0.413286 1.072970I
b = 1.42145 + 0.65571I
0.1084 + 16.5867I 0
u = 1.60922 + 0.08030I
a = 0.270773 + 0.717828I
b = 1.37271 1.07445I
3.46237 + 4.60398I 0
u = 1.60922 0.08030I
a = 0.270773 0.717828I
b = 1.37271 + 1.07445I
3.46237 4.60398I 0
u = 0.125878 + 0.322657I
a = 3.80205 2.84036I
b = 0.779351 + 0.457129I
8.28711 4.58904I 1.66459 + 8.40382I
u = 0.125878 0.322657I
a = 3.80205 + 2.84036I
b = 0.779351 0.457129I
8.28711 + 4.58904I 1.66459 8.40382I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55309 + 0.60898I
a = 0.171676 + 0.555702I
b = 1.234490 0.047231I
1.64260 2.30540I 0
u = 1.55309 0.60898I
a = 0.171676 0.555702I
b = 1.234490 + 0.047231I
1.64260 + 2.30540I 0
u = 1.64697 + 0.30699I
a = 0.307607 0.488246I
b = 1.146860 + 0.090509I
6.04528 1.09420I 0
u = 1.64697 0.30699I
a = 0.307607 + 0.488246I
b = 1.146860 0.090509I
6.04528 + 1.09420I 0
u = 0.124790
a = 13.9437
b = 0.470722
2.89659 10.5150
u = 0.0876446 + 0.0176727I
a = 2.61863 7.91258I
b = 1.41551 0.34649I
1.67209 + 2.65200I 6.68294 + 0.54441I
u = 0.0876446 0.0176727I
a = 2.61863 + 7.91258I
b = 1.41551 + 0.34649I
1.67209 2.65200I 6.68294 0.54441I
13
II.
I
u
2
= h3u
20
5u
19
+· · ·+b2, 3u
20
+4u
19
+· · ·+a+4, u
21
14u
19
+· · ·+u1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
3u
20
4u
19
+ ··· + 12u 4
3u
20
+ 5u
19
+ ··· 4u + 2
a
4
=
u
20
2u
19
+ ··· 4u + 3
4u
20
+ 5u
19
+ ··· 5u + 2
a
9
=
u
19
3u
18
+ ··· + 8u 2
3u
20
+ 5u
19
+ ··· 4u + 2
a
8
=
3u
20
+ 3u
19
+ ··· 7u + 5
u
20
u
19
+ ··· + 2u 2
a
12
=
2u
20
3u
19
+ ··· + 8u 3
u
19
u
18
+ ··· 5u
2
2u
a
7
=
3u
20
+ 4u
19
+ ··· 4u + 3
u
20
+ 3u
19
+ ··· u + 1
a
11
=
2u
20
+ 4u
19
+ ··· 5u
2
+ 5u
7u
20
+ 10u
19
+ ··· 9u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
20
13u
19
84u
18
+ 158u
17
+ 425u
16
809u
15
1168u
14
+ 2256u
13
+ 1870u
12
3697u
11
1742u
10
+3586u
9
+919u
8
1994u
7
306u
6
+636u
5
+87u
4
158u
3
+7u
2
+24u16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
21
14u
19
+ ··· + u 1
c
3
u
21
+ u
20
+ ··· u + 1
c
4
u
21
2u
19
+ ··· 2u 1
c
5
u
21
14u
19
+ ··· + u + 1
c
6
, c
7
u
21
+ u
20
+ ··· 9u
2
1
c
8
u
21
u
20
+ ··· u 1
c
9
u
21
+ 3u
20
+ ··· + 9u
2
1
c
10
u
21
+ 3u
19
+ ··· 8u
2
+ 1
c
11
u
21
u
20
+ ··· + 9u
2
+ 1
c
12
u
21
3u
20
+ ··· 9u
2
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
21
28y
20
+ ··· + 9y 1
c
3
, c
8
y
21
21y
20
+ ··· + 11y 1
c
4
y
21
4y
20
+ ··· 10y 1
c
6
, c
7
, c
11
y
21
+ 21y
20
+ ··· 18y 1
c
9
, c
12
y
21
17y
20
+ ··· + 18y 1
c
10
y
21
+ 6y
20
+ ··· + 16y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.980123 + 0.287889I
a = 0.202219 0.402737I
b = 0.821250 + 0.530110I
1.64253 3.32447I 6.73227 + 3.23371I
u = 0.980123 0.287889I
a = 0.202219 + 0.402737I
b = 0.821250 0.530110I
1.64253 + 3.32447I 6.73227 3.23371I
u = 1.12877
a = 0.459570
b = 0.644952
3.11468 14.6860
u = 1.23262
a = 1.72801
b = 0.411550
0.191889 1.35120
u = 1.267400 + 0.189837I
a = 1.145350 + 0.468508I
b = 0.372541 0.430174I
5.01252 + 5.95890I 0.38975 5.02691I
u = 1.267400 0.189837I
a = 1.145350 0.468508I
b = 0.372541 + 0.430174I
5.01252 5.95890I 0.38975 + 5.02691I
u = 0.513299 + 0.356158I
a = 0.298859 0.889580I
b = 1.198820 + 0.616343I
1.84979 3.43907I 5.77787 + 8.99517I
u = 0.513299 0.356158I
a = 0.298859 + 0.889580I
b = 1.198820 0.616343I
1.84979 + 3.43907I 5.77787 8.99517I
u = 0.428378 + 0.445644I
a = 0.59208 + 1.78035I
b = 0.635250 + 0.374830I
8.00683 3.75384I 1.41538 + 0.52564I
u = 0.428378 0.445644I
a = 0.59208 1.78035I
b = 0.635250 0.374830I
8.00683 + 3.75384I 1.41538 0.52564I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.50488 + 0.09457I
a = 0.300529 0.973392I
b = 1.25356 + 0.73428I
7.16310 + 3.43030I 3.74353 1.15763I
u = 1.50488 0.09457I
a = 0.300529 + 0.973392I
b = 1.25356 0.73428I
7.16310 3.43030I 3.74353 + 1.15763I
u = 1.54873 + 0.07946I
a = 0.337710 + 0.596656I
b = 1.56117 0.99590I
5.11343 + 4.80864I 8.81380 6.84118I
u = 1.54873 0.07946I
a = 0.337710 0.596656I
b = 1.56117 + 0.99590I
5.11343 4.80864I 8.81380 + 6.84118I
u = 0.428907
a = 3.99233
b = 0.611834
2.58386 16.1200
u = 1.55858 + 0.20556I
a = 0.410534 + 0.603726I
b = 1.123510 0.131583I
5.66515 0.90405I 2.75648 2.17520I
u = 1.55858 0.20556I
a = 0.410534 0.603726I
b = 1.123510 + 0.131583I
5.66515 + 0.90405I 2.75648 + 2.17520I
u = 0.213126 + 0.328797I
a = 2.06155 + 1.99092I
b = 1.118860 0.369484I
1.13219 1.99292I 5.58755 0.19985I
u = 0.213126 0.328797I
a = 2.06155 1.99092I
b = 1.118860 + 0.369484I
1.13219 + 1.99292I 5.58755 + 0.19985I
u = 1.75063 + 0.30855I
a = 0.268529 0.284726I
b = 1.241070 + 0.159795I
2.01124 1.49085I 8.33532 + 1.09996I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.75063 0.30855I
a = 0.268529 + 0.284726I
b = 1.241070 0.159795I
2.01124 + 1.49085I 8.33532 1.09996I
19
III. I
u
3
= hb + 1, u
5
+ 2u
4
+ 2u
3
4u
2
+ a u + 1, u
6
3u
5
+ 6u
3
4u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
5
2u
4
2u
3
+ 4u
2
+ u 1
1
a
4
=
u
4
2u
3
u
2
+ 2u + 1
u
5
2u
4
2u
3
+ 5u
2
1
a
9
=
u
5
2u
4
2u
3
+ 4u
2
+ u 2
1
a
8
=
u
3
+ 2u
2
2
u
5
+ 2u
4
+ u
3
4u
2
+ u
a
12
=
u
5
2u
4
2u
3
+ 4u
2
+ u 1
1
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
11
=
u
5
+ u
4
+ 2u
3
2u
2
+ 2u
3u
5
+ 4u
4
+ 6u
3
7u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
6
+ 3u
5
6u
3
4u
2
+ 1
c
3
, c
8
u
6
3u
5
+ 6u
3
4u
2
+ 1
c
4
u
6
+ u
5
2u
4
+ 6u
3
4u
2
+ 2u + 1
c
6
, c
7
, c
10
c
11
u
6
u
5
+ 2u
4
2u
3
1
c
9
, c
12
(u + 1)
6
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
8
y
6
9y
5
+ 28y
4
34y
3
+ 16y
2
8y + 1
c
4
y
6
5y
5
16y
4
22y
3
12y
2
12y + 1
c
6
, c
7
, c
10
c
11
y
6
+ 3y
5
6y
3
4y
2
+ 1
c
9
, c
12
(y 1)
6
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.558227 + 0.461646I
a = 0.64026 + 1.59235I
b = 1.00000
1.64493 6.00000
u = 0.558227 0.461646I
a = 0.64026 1.59235I
b = 1.00000
1.64493 6.00000
u = 1.39152
a = 1.97338
b = 1.00000
1.64493 6.00000
u = 0.401914
a = 0.688603
b = 1.00000
1.64493 6.00000
u = 1.83849 + 0.16576I
a = 0.309272 + 0.392670I
b = 1.00000
1.64493 6.00000
u = 1.83849 0.16576I
a = 0.309272 0.392670I
b = 1.00000
1.64493 6.00000
23
IV. I
u
4
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
6
=
1
0
a
3
=
0
1
a
10
=
1
1
a
4
=
1
2
a
9
=
0
1
a
8
=
1
3
a
12
=
1
1
a
7
=
0
1
a
11
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
u 1
c
3
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
27
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)(u
6
+ 3u
5
+ ··· 4u
2
+ 1)(u
21
14u
19
+ ··· + u 1)
· (u
87
+ 5u
86
+ ··· 31u + 1)
c
3
(u + 1)(u
6
3u
5
+ ··· 4u
2
+ 1)(u
21
+ u
20
+ ··· u + 1)
· (u
87
+ 2u
86
+ ··· + 1867u 1459)
c
4
(u 1)(u
6
+ u
5
+ ··· + 2u + 1)(u
21
2u
19
+ ··· 2u 1)
· (u
87
u
86
+ ··· 108842u + 15817)
c
5
(u 1)(u
6
+ 3u
5
+ ··· 4u
2
+ 1)(u
21
14u
19
+ ··· + u + 1)
· (u
87
+ 5u
86
+ ··· 31u + 1)
c
6
, c
7
(u + 1)(u
6
u
5
+ 2u
4
2u
3
1)(u
21
+ u
20
+ ··· 9u
2
1)
· (u
87
+ 2u
86
+ ··· 36u + 7)
c
8
(u + 1)(u
6
3u
5
+ ··· 4u
2
+ 1)(u
21
u
20
+ ··· u 1)
· (u
87
+ 2u
86
+ ··· + 1867u 1459)
c
9
((u + 1)
7
)(u
21
+ 3u
20
+ ··· + 9u
2
1)(u
87
9u
86
+ ··· + 784u 8)
c
10
(u + 1)(u
6
u
5
+ 2u
4
2u
3
1)(u
21
+ 3u
19
+ ··· 8u
2
+ 1)
· (u
87
+ 3u
86
+ ··· + 619168u + 590297)
c
11
(u + 1)(u
6
u
5
+ 2u
4
2u
3
1)(u
21
u
20
+ ··· + 9u
2
+ 1)
· (u
87
+ 2u
86
+ ··· 36u + 7)
c
12
((u + 1)
7
)(u
21
3u
20
+ ··· 9u
2
+ 1)(u
87
9u
86
+ ··· + 784u 8)
28
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)(y
6
9y
5
+ 28y
4
34y
3
+ 16y
2
8y + 1)
· (y
21
28y
20
+ ··· + 9y 1)(y
87
91y
86
+ ··· + 301y 1)
c
3
, c
8
(y 1)(y
6
9y
5
+ 28y
4
34y
3
+ 16y
2
8y + 1)
· (y
21
21y
20
+ ··· + 11y 1)
· (y
87
64y
86
+ ··· + 35213103y 2128681)
c
4
(y 1)(y
6
5y
5
16y
4
22y
3
12y
2
12y + 1)
· (y
21
4y
20
+ ··· 10y 1)
· (y
87
+ 33y
86
+ ··· + 197455366y 250177489)
c
6
, c
7
, c
11
(y 1)(y
6
+ 3y
5
+ ··· 4y
2
+ 1)(y
21
+ 21y
20
+ ··· 18y 1)
· (y
87
+ 90y
86
+ ··· + 2206y 49)
c
9
, c
12
((y 1)
7
)(y
21
17y
20
+ ··· + 18y 1)
· (y
87
59y
86
+ ··· + 638432y 64)
c
10
(y 1)(y
6
+ 3y
5
+ ··· 4y
2
+ 1)(y
21
+ 6y
20
+ ··· + 16y 1)
· (y
87
25y
86
+ ··· + 7264616979632y 348450548209)
29