12a
1225
(K12a
1225
)
A knot diagram
1
Linearized knot diagam
5 6 8 10 11 3 12 4 1 2 7 9
Solving Sequence
1,9 4,10
5 2 11 8 3 12 7 6
c
9
c
4
c
1
c
10
c
8
c
3
c
12
c
7
c
6
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h7.20918 × 10
393
u
111
+ 5.54525 × 10
394
u
110
+ ··· + 1.43090 × 10
397
b 3.89590 × 10
397
,
1.74511 × 10
396
u
111
9.01477 × 10
395
u
110
+ ··· + 1.21484 × 10
400
a 9.13035 × 10
401
,
u
112
+ 9u
111
+ ··· 90142u 1132i
I
u
2
= h−1343140997u
15
3388091310u
14
+ ··· + 6660374991b + 2076426241,
265614140u
15
+ 2980660587u
14
+ ··· + 6660374991a + 17049769085, u
16
+ 5u
15
+ ··· 2u 1i
I
u
3
= h−a
3
+ b 4a 1, a
4
+ a
3
+ 4a
2
+ 4a + 1, u 1i
I
u
4
= hb + 1, a + 1, u 1i
I
u
5
= hb
5
2b
4
a + b
3
a
2
3b
3
+ 4b
2
a a
2
b + b a + 1, u 1i
I
v
1
= ha, b
4
+ b
3
1, v 1i
I
v
2
= ha, b 1, v 1i
* 6 irreducible components of dim
C
= 0, with total 138 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h7.21 × 10
393
u
111
+ 5.55 × 10
394
u
110
+ · · · + 1.43 × 10
397
b 3.90 ×
10
397
, 1.75 × 10
396
u
111
9.01 × 10
395
u
110
+ · · · + 1.21 × 10
400
a 9.13 ×
10
401
, u
112
+ 9u
111
+ · · · 90142u 1132i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
0.000143650u
111
+ 0.0000742056u
110
+ ··· + 1183.64u + 75.1571
0.000503820u
111
0.00387535u
110
+ ··· + 132.583u + 2.72269
a
10
=
1
u
2
a
5
=
0.00163818u
111
0.0140914u
110
+ ··· + 1425.91u + 79.2593
0.00251920u
111
0.0199229u
110
+ ··· + 299.210u + 4.84051
a
2
=
0.000256671u
111
+ 0.00161270u
110
+ ··· + 1043.43u + 70.8299
0.000551878u
111
+ 0.00433234u
110
+ ··· 57.9556u + 0.0777320
a
11
=
0.000976338u
111
+ 0.00910943u
110
+ ··· 1193.78u 61.3082
0.000854627u
111
0.00682138u
110
+ ··· + 94.3398u + 0.548443
a
8
=
0.000398981u
111
0.00415660u
110
+ ··· + 1073.25u + 68.4436
0.000742676u
111
+ 0.00637617u
110
+ ··· 273.417u 2.86495
a
3
=
0.00139747u
111
0.0104758u
110
+ ··· 147.808u + 8.40896
0.00107238u
111
0.00755752u
110
+ ··· 265.251u 3.49103
a
12
=
u
u
a
7
=
0.000769701u
111
0.00710499u
110
+ ··· + 1097.78u + 68.7355
0.000371956u
111
+ 0.00342777u
110
+ ··· 248.882u 2.57307
a
6
=
0.000217324u
111
0.00370821u
110
+ ··· + 1742.49u + 88.6486
0.000823128u
111
+ 0.00586181u
110
+ ··· + 199.870u + 3.76570
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0107685u
111
+ 0.0968647u
110
+ ··· 5066.55u 61.6765
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
16(16u
112
+ 8u
111
+ ··· 57723u + 15987)
c
2
, c
6
u
112
+ 9u
111
+ ··· 90142u 1132
c
3
, c
8
16(16u
112
8u
111
+ ··· 75u + 75)
c
4
48(48u
112
48u
111
+ ··· 1592u 64)
c
5
48(48u
112
+ 48u
111
+ ··· + 1592u 64)
c
7
, c
11
16(16u
112
+ 8u
111
+ ··· + 75u + 75)
c
9
, c
12
u
112
9u
111
+ ··· + 90142u 1132
c
10
16(16u
112
8u
111
+ ··· + 57723u + 15987)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
256(256y
112
5152y
111
+ ··· 1.30933 × 10
10
y + 2.55584 × 10
8
)
c
2
, c
6
, c
9
c
12
y
112
75y
111
+ ··· 5045677580y + 1281424
c
3
, c
7
, c
8
c
11
256(256y
112
16672y
111
+ ··· 439725y + 5625)
c
4
, c
5
2304(2304y
112
11424y
111
+ ··· 1092032y + 4096)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.076594 + 0.998674I
a = 0.231384 + 0.192595I
b = 1.092480 + 0.313140I
3.25749 3.93133I 0
u = 0.076594 0.998674I
a = 0.231384 0.192595I
b = 1.092480 0.313140I
3.25749 + 3.93133I 0
u = 0.989446 + 0.111155I
a = 0.06785 2.70572I
b = 0.26976 1.69355I
0.179102 + 1.361240I 0
u = 0.989446 0.111155I
a = 0.06785 + 2.70572I
b = 0.26976 + 1.69355I
0.179102 1.361240I 0
u = 1.03475
a = 0.678980
b = 0.837668
1.64218 0
u = 0.928213 + 0.201967I
a = 0.799418 0.944826I
b = 1.170730 0.590714I
0.866138 + 0.769169I 0
u = 0.928213 0.201967I
a = 0.799418 + 0.944826I
b = 1.170730 + 0.590714I
0.866138 0.769169I 0
u = 0.012899 + 1.051640I
a = 0.263753 0.403519I
b = 1.333720 0.114397I
8.41416 6.54605I 0
u = 0.012899 1.051640I
a = 0.263753 + 0.403519I
b = 1.333720 + 0.114397I
8.41416 + 6.54605I 0
u = 0.033862 + 0.928112I
a = 0.140232 + 0.039291I
b = 1.281230 0.478890I
5.94038 4.98070I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.033862 0.928112I
a = 0.140232 0.039291I
b = 1.281230 + 0.478890I
5.94038 + 4.98070I 0
u = 0.842253 + 0.386957I
a = 0.47697 1.50961I
b = 0.239501 + 0.060068I
0.62344 + 9.53417I 0
u = 0.842253 0.386957I
a = 0.47697 + 1.50961I
b = 0.239501 0.060068I
0.62344 9.53417I 0
u = 1.042910 + 0.349738I
a = 0.383966 + 1.323600I
b = 0.281312 + 0.605442I
2.67525 + 4.55404I 0
u = 1.042910 0.349738I
a = 0.383966 1.323600I
b = 0.281312 0.605442I
2.67525 4.55404I 0
u = 0.808934 + 0.384457I
a = 0.15671 + 1.60302I
b = 0.780624 + 0.552924I
1.13362 + 2.05532I 0
u = 0.808934 0.384457I
a = 0.15671 1.60302I
b = 0.780624 0.552924I
1.13362 2.05532I 0
u = 1.048220 + 0.374459I
a = 0.869926 0.251124I
b = 0.291121 0.253138I
0.866138 + 0.769169I 0
u = 1.048220 0.374459I
a = 0.869926 + 0.251124I
b = 0.291121 + 0.253138I
0.866138 0.769169I 0
u = 1.072650 + 0.309982I
a = 0.08998 + 2.27104I
b = 0.829938 + 0.206066I
0.179102 1.361240I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.072650 0.309982I
a = 0.08998 2.27104I
b = 0.829938 0.206066I
0.179102 + 1.361240I 0
u = 0.771213 + 0.378608I
a = 0.583767 + 0.056030I
b = 0.859928 0.546705I
2.02176 + 0.22367I 0
u = 0.771213 0.378608I
a = 0.583767 0.056030I
b = 0.859928 + 0.546705I
2.02176 0.22367I 0
u = 0.229968 + 0.823116I
a = 0.053000 0.318049I
b = 1.397590 0.020177I
9.29392 0.40910I 0
u = 0.229968 0.823116I
a = 0.053000 + 0.318049I
b = 1.397590 + 0.020177I
9.29392 + 0.40910I 0
u = 0.473129 + 1.051400I
a = 0.199711 0.300992I
b = 1.198560 + 0.396998I
5.00780 + 5.56131I 0
u = 0.473129 1.051400I
a = 0.199711 + 0.300992I
b = 1.198560 0.396998I
5.00780 5.56131I 0
u = 1.145040 + 0.158811I
a = 0.12713 1.42460I
b = 1.228560 0.577397I
5.94038 + 4.98070I 0
u = 1.145040 0.158811I
a = 0.12713 + 1.42460I
b = 1.228560 + 0.577397I
5.94038 4.98070I 0
u = 1.155800 + 0.143605I
a = 0.04341 + 1.85196I
b = 1.184810 + 0.664213I
1.99720 + 9.98062I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.155800 0.143605I
a = 0.04341 1.85196I
b = 1.184810 0.664213I
1.99720 9.98062I 0
u = 0.497490 + 0.652853I
a = 0.568345 + 0.080588I
b = 0.127788 0.410063I
1.13362 2.05532I 0
u = 0.497490 0.652853I
a = 0.568345 0.080588I
b = 0.127788 + 0.410063I
1.13362 + 2.05532I 0
u = 0.941206 + 0.736070I
a = 0.381307 + 1.186970I
b = 1.056170 + 0.634618I
1.25247 5.17059I 0
u = 0.941206 0.736070I
a = 0.381307 1.186970I
b = 1.056170 0.634618I
1.25247 + 5.17059I 0
u = 1.084390 + 0.505444I
a = 0.510177 1.293310I
b = 1.270000 0.369732I
6.78188 + 5.23022I 0
u = 1.084390 0.505444I
a = 0.510177 + 1.293310I
b = 1.270000 + 0.369732I
6.78188 5.23022I 0
u = 1.190100 + 0.153253I
a = 0.178297 + 0.610262I
b = 1.38897 + 0.33779I
1.46756 + 0.33645I 0
u = 1.190100 0.153253I
a = 0.178297 0.610262I
b = 1.38897 0.33779I
1.46756 0.33645I 0
u = 0.122047 + 0.779373I
a = 0.114156 + 0.418854I
b = 0.527172 + 0.483285I
2.67525 4.55404I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.122047 0.779373I
a = 0.114156 0.418854I
b = 0.527172 0.483285I
2.67525 + 4.55404I 0
u = 1.069800 + 0.576020I
a = 0.14524 1.44287I
b = 1.36776 0.79349I
3.04906 11.28170I 0
u = 1.069800 0.576020I
a = 0.14524 + 1.44287I
b = 1.36776 + 0.79349I
3.04906 + 11.28170I 0
u = 0.023540 + 1.254960I
a = 0.449621 0.002989I
b = 1.059750 + 0.329925I
1.25247 5.17059I 0
u = 0.023540 1.254960I
a = 0.449621 + 0.002989I
b = 1.059750 0.329925I
1.25247 + 5.17059I 0
u = 0.150701 + 1.283400I
a = 0.141625 0.115575I
b = 1.253310 0.414045I
4.91352 + 13.09700I 0
u = 0.150701 1.283400I
a = 0.141625 + 0.115575I
b = 1.253310 + 0.414045I
4.91352 13.09700I 0
u = 1.267280 + 0.341348I
a = 0.60742 1.44572I
b = 0.895900 0.360926I
1.28303 3.24310I 0
u = 1.267280 0.341348I
a = 0.60742 + 1.44572I
b = 0.895900 + 0.360926I
1.28303 + 3.24310I 0
u = 1.303300 + 0.294422I
a = 0.11471 1.55010I
b = 0.07325 1.51517I
4.13502 12.09070I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.303300 0.294422I
a = 0.11471 + 1.55010I
b = 0.07325 + 1.51517I
4.13502 + 12.09070I 0
u = 1.194340 + 0.660141I
a = 0.210808 + 0.809537I
b = 0.763792 + 0.253689I
1.72504 2.62810I 0
u = 1.194340 0.660141I
a = 0.210808 0.809537I
b = 0.763792 0.253689I
1.72504 + 2.62810I 0
u = 1.263900 + 0.516886I
a = 0.03228 1.44001I
b = 0.829618 0.750072I
0.62344 + 9.53417I 0
u = 1.263900 0.516886I
a = 0.03228 + 1.44001I
b = 0.829618 + 0.750072I
0.62344 9.53417I 0
u = 1.334180 + 0.314698I
a = 0.081026 + 1.235020I
b = 0.198328 + 1.226370I
8.41416 6.54605I 0
u = 1.334180 0.314698I
a = 0.081026 1.235020I
b = 0.198328 1.226370I
8.41416 + 6.54605I 0
u = 0.328035 + 0.535610I
a = 1.188290 + 0.333926I
b = 1.095590 0.102708I
2.02176 0.22367I 4.79873 + 0.86633I
u = 0.328035 0.535610I
a = 1.188290 0.333926I
b = 1.095590 + 0.102708I
2.02176 + 0.22367I 4.79873 0.86633I
u = 1.352620 + 0.255718I
a = 0.196044 + 1.169210I
b = 0.118555 + 1.122180I
6.78188 + 5.23022I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.352620 0.255718I
a = 0.196044 1.169210I
b = 0.118555 1.122180I
6.78188 5.23022I 0
u = 1.298990 + 0.466389I
a = 0.37182 + 1.60795I
b = 1.35303 + 0.86227I
1.99720 + 9.98062I 0
u = 1.298990 0.466389I
a = 0.37182 1.60795I
b = 1.35303 0.86227I
1.99720 9.98062I 0
u = 1.385620 + 0.052575I
a = 0.73344 + 1.28348I
b = 0.485042 + 1.057350I
4.28714 3.78788I 0
u = 1.385620 0.052575I
a = 0.73344 1.28348I
b = 0.485042 1.057350I
4.28714 + 3.78788I 0
u = 1.310370 + 0.516292I
a = 0.21364 1.43619I
b = 1.092980 0.635421I
0.61110 + 9.33643I 0
u = 1.310370 0.516292I
a = 0.21364 + 1.43619I
b = 1.092980 + 0.635421I
0.61110 9.33643I 0
u = 1.37817 + 0.36293I
a = 0.84923 + 1.26582I
b = 1.240840 + 0.469570I
4.28714 3.78788I 0
u = 1.37817 0.36293I
a = 0.84923 1.26582I
b = 1.240840 0.469570I
4.28714 + 3.78788I 0
u = 1.43190 + 0.15558I
a = 0.203034 0.989310I
b = 0.080939 0.939558I
9.29392 + 0.40910I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43190 0.15558I
a = 0.203034 + 0.989310I
b = 0.080939 + 0.939558I
9.29392 0.40910I 0
u = 1.41028 + 0.32457I
a = 0.757729 0.381296I
b = 0.925369 + 0.082252I
1.46756 + 0.33645I 0
u = 1.41028 0.32457I
a = 0.757729 + 0.381296I
b = 0.925369 0.082252I
1.46756 0.33645I 0
u = 0.365915 + 0.412674I
a = 0.14055 + 2.53139I
b = 0.253914 0.136115I
1.72504 + 2.62810I 9.23789 9.47130I
u = 0.365915 0.412674I
a = 0.14055 2.53139I
b = 0.253914 + 0.136115I
1.72504 2.62810I 9.23789 + 9.47130I
u = 1.35458 + 0.51347I
a = 0.44715 + 1.41303I
b = 1.219040 + 0.364948I
4.13502 + 12.09070I 0
u = 1.35458 0.51347I
a = 0.44715 1.41303I
b = 1.219040 0.364948I
4.13502 12.09070I 0
u = 1.09380 + 0.98488I
a = 0.223478 + 0.718541I
b = 0.664565 0.021277I
2.08701 + 3.74779I 0
u = 1.09380 0.98488I
a = 0.223478 0.718541I
b = 0.664565 + 0.021277I
2.08701 3.74779I 0
u = 0.42099 + 1.41567I
a = 0.249353 + 0.126700I
b = 0.968329 0.139295I
2.08701 3.74779I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.42099 1.41567I
a = 0.249353 0.126700I
b = 0.968329 + 0.139295I
2.08701 + 3.74779I 0
u = 1.37062 + 0.55200I
a = 0.063610 1.279610I
b = 1.31742 0.59639I
3.04906 + 11.28170I 0
u = 1.37062 0.55200I
a = 0.063610 + 1.279610I
b = 1.31742 + 0.59639I
3.04906 11.28170I 0
u = 0.349248 + 0.305350I
a = 0.768121 + 0.016112I
b = 0.739773 + 0.980194I
1.28303 3.24310I 3.29814 + 8.40281I
u = 0.349248 0.305350I
a = 0.768121 0.016112I
b = 0.739773 0.980194I
1.28303 + 3.24310I 3.29814 8.40281I
u = 1.48918 + 0.38329I
a = 0.061872 0.544415I
b = 0.413632 0.594403I
4.00511 0.72764I 0
u = 1.48918 0.38329I
a = 0.061872 + 0.544415I
b = 0.413632 + 0.594403I
4.00511 + 0.72764I 0
u = 0.046450 + 0.453850I
a = 0.824444 0.751338I
b = 0.115446 0.445470I
1.27033I 0. + 4.50236I
u = 0.046450 0.453850I
a = 0.824444 + 0.751338I
b = 0.115446 + 0.445470I
1.27033I 0. 4.50236I
u = 1.44276 + 0.57759I
a = 0.298746 + 1.328770I
b = 1.41290 + 0.70903I
19.5476I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44276 0.57759I
a = 0.298746 1.328770I
b = 1.41290 0.70903I
19.5476I 0
u = 1.45797 + 0.63871I
a = 0.181999 1.166490I
b = 1.31547 0.65832I
4.91352 13.09700I 0
u = 1.45797 0.63871I
a = 0.181999 + 1.166490I
b = 1.31547 + 0.65832I
4.91352 + 13.09700I 0
u = 0.309714 + 0.264226I
a = 2.48579 1.07022I
b = 0.452397 + 0.657328I
0.61110 + 9.33643I 0.22464 7.70849I
u = 0.309714 0.264226I
a = 2.48579 + 1.07022I
b = 0.452397 0.657328I
0.61110 9.33643I 0.22464 + 7.70849I
u = 1.50628 + 0.58589I
a = 0.154270 + 0.911151I
b = 1.33432 + 0.49940I
5.00780 + 5.56131I 0
u = 1.50628 0.58589I
a = 0.154270 0.911151I
b = 1.33432 0.49940I
5.00780 5.56131I 0
u = 0.19099 + 1.61396I
a = 0.1113280 + 0.0382015I
b = 1.103820 + 0.299690I
5.74733I 0
u = 0.19099 1.61396I
a = 0.1113280 0.0382015I
b = 1.103820 0.299690I
5.74733I 0
u = 1.35740 + 0.90914I
a = 0.128278 + 0.818090I
b = 1.105390 + 0.487764I
1.96231 5.07117I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.35740 0.90914I
a = 0.128278 0.818090I
b = 1.105390 0.487764I
1.96231 + 5.07117I 0
u = 1.52288 + 0.59787I
a = 0.375475 0.409323I
b = 1.356790 0.132401I
4.00511 + 0.72764I 0
u = 1.52288 0.59787I
a = 0.375475 + 0.409323I
b = 1.356790 + 0.132401I
4.00511 0.72764I 0
u = 1.63935
a = 0.478929
b = 0.242092
10.3706 0
u = 1.07002 + 1.27061I
a = 0.030202 0.435703I
b = 0.927485 + 0.155970I
1.96231 5.07117I 0
u = 1.07002 1.27061I
a = 0.030202 + 0.435703I
b = 0.927485 0.155970I
1.96231 + 5.07117I 0
u = 0.290654 + 0.105986I
a = 3.69871 + 1.83262I
b = 0.514232 0.449850I
3.25749 + 3.93133I 6.45843 5.67906I
u = 0.290654 0.105986I
a = 3.69871 1.83262I
b = 0.514232 + 0.449850I
3.25749 3.93133I 6.45843 + 5.67906I
u = 0.187718
a = 1.90046
b = 1.73335
10.3706 42.9970
u = 1.89629
a = 0.683881
b = 1.58737
3.86997 0
15
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.92194
a = 0.611878
b = 0.823316
3.86997 0
u = 0.0160460
a = 57.9682
b = 0.897203
1.64218 6.13430
16
II.
I
u
2
= h−1.34 × 10
9
u
15
3.39 × 10
9
u
14
+ · · · + 6.66 × 10
9
b + 2.08 × 10
9
, 2.66 ×
10
8
u
15
+2.98×10
9
u
14
+· · ·+6.66×10
9
a+1.70×10
10
, u
16
+5u
15
+· · ·2u1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
0.0398798u
15
0.447521u
14
+ ··· + 3.28976u 2.55988
0.201661u
15
+ 0.508694u
14
+ ··· 2.48637u 0.311758
a
10
=
1
u
2
a
5
=
0.101874u
15
0.843672u
14
+ ··· + 1.33952u 2.62352
0.238671u
15
+ 0.717261u
14
+ ··· 2.72072u 0.397940
a
2
=
1.09064u
15
4.10646u
14
+ ··· 4.87264u 0.0808389
1.78150u
15
7.66429u
14
+ ··· + 1.33234u + 0.954948
a
11
=
1.60822u
15
+ 6.56169u
14
+ ··· 5.97915u 3.48691
1.35300u
15
+ 5.70439u
14
+ ··· + 0.670822u 1.19245
a
8
=
0.734918u
15
2.29797u
14
+ ··· + 3.65342u + 0.892857
1.12368u
15
4.52412u
14
+ ··· + 7.25559u + 2.58191
a
3
=
3.67851u
15
15.2266u
14
+ ··· + 17.3498u + 3.61819
2.38855u
15
9.62679u
14
+ ··· + 7.40411u + 5.18039
a
12
=
u
u
a
7
=
0.522788u
15
1.42424u
14
+ ··· + 2.70001u + 0.610534
0.911553u
15
3.65039u
14
+ ··· + 6.30217u + 2.29959
a
6
=
4.10790u
15
17.4344u
14
+ ··· + 10.0290u + 1.74411
3.10934u
15
13.4400u
14
+ ··· 3.71620u + 3.21349
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
10698032698
2220124997
u
15
54625834408
2220124997
u
14
+ ···
124965329986
2220124997
u
22261582578
2220124997
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 4u
15
+ ··· + 3u + 1
c
2
, c
12
u
16
5u
15
+ ··· + 2u 1
c
3
, c
11
u
16
3u
15
+ ··· 3u + 1
c
4
u
16
4u
15
+ ··· + 4u + 1
c
5
u
16
+ 4u
15
+ ··· 4u + 1
c
6
, c
9
u
16
+ 5u
15
+ ··· 2u 1
c
7
, c
8
u
16
+ 3u
15
+ ··· + 3u + 1
c
10
u
16
4u
15
+ ··· 3u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
16
10y
15
+ ··· 13y + 1
c
2
, c
6
, c
9
c
12
y
16
11y
15
+ ··· 8y + 1
c
3
, c
7
, c
8
c
11
y
16
19y
15
+ ··· 23y + 1
c
4
, c
5
y
16
8y
15
+ ··· 6y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.855691
a = 2.79932
b = 2.68688
0.711120 9.81610
u = 1.146170 + 0.462459I
a = 0.12388 + 1.84991I
b = 1.020380 + 0.753532I
11.5750I 0. 11.00303I
u = 1.146170 0.462459I
a = 0.12388 1.84991I
b = 1.020380 0.753532I
11.5750I 0. + 11.00303I
u = 1.148830 + 0.492284I
a = 0.034064 1.246620I
b = 0.798811 0.208995I
1.07726 2.17718I 0.53151 + 1.42089I
u = 1.148830 0.492284I
a = 0.034064 + 1.246620I
b = 0.798811 + 0.208995I
1.07726 + 2.17718I 0.53151 1.42089I
u = 1.05468 + 0.98904I
a = 0.448465 0.820018I
b = 1.008820 0.471438I
1.83679 + 5.66055I 4.0106 15.0207I
u = 1.05468 0.98904I
a = 0.448465 + 0.820018I
b = 1.008820 + 0.471438I
1.83679 5.66055I 4.0106 + 15.0207I
u = 0.541515
a = 4.23654
b = 1.11420
0.711120 9.81610
u = 0.51345 + 1.54946I
a = 0.175161 + 0.081391I
b = 1.000850 0.273809I
1.83679 5.66055I 4.0106 + 15.0207I
u = 0.51345 1.54946I
a = 0.175161 0.081391I
b = 1.000850 + 0.273809I
1.83679 + 5.66055I 4.0106 15.0207I
20
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.65977
a = 0.515660
b = 0.366311
10.2737 39.7580
u = 0.322309
a = 0.530108
b = 1.75057
10.2737 39.7580
u = 0.165504 + 0.248141I
a = 3.21855 + 0.57876I
b = 0.527246 + 0.683816I
1.07726 2.17718I 0.53151 + 1.42089I
u = 0.165504 0.248141I
a = 3.21855 0.57876I
b = 0.527246 0.683816I
1.07726 + 2.17718I 0.53151 1.42089I
u = 1.79107
a = 0.276801
b = 0.335027
4.73200 13.1350
u = 1.90466
a = 0.598131
b = 1.42394
4.73200 13.1350
21
III. I
u
3
= h−a
3
+ b 4a 1, a
4
+ a
3
+ 4a
2
+ 4a + 1, u 1i
(i) Arc colorings
a
1
=
0
1
a
9
=
1
0
a
4
=
a
a
3
+ 4a + 1
a
10
=
1
1
a
5
=
a
3
+ 4a + 1
2a
3
+ 7a + 2
a
2
=
3a
3
+ a
2
+ 11a + 4
5a
3
+ 2a
2
+ 19a + 8
a
11
=
5a
3
+ 2a
2
+ 19a + 9
6a
3
+ 2a
2
+ 23a + 10
a
8
=
a
3
3a
3a
3
a
2
11a 4
a
3
=
3a
3
a
2
11a 4
5a
3
2a
2
19a 8
a
12
=
1
1
a
7
=
3a
3
a
2
11a 4
5a
3
2a
2
19a 8
a
6
=
3a
3
a
2
11a 4
5a
3
2a
2
19a 8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
u
3
2u
2
+ 1
c
2
, c
6
u
4
c
3
, c
8
u
4
+ u
3
2u
2
+ 1
c
4
u
4
+ u
2
+ 4u + 1
c
5
, c
7
, c
10
c
11
u
4
u
3
1
c
9
, c
12
(u + 1)
4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
8
y
4
5y
3
+ 6y
2
4y + 1
c
2
, c
6
y
4
c
4
y
4
+ 2y
3
+ 3y
2
14y + 1
c
5
, c
7
, c
10
c
11
y
4
y
3
2y
2
+ 1
c
9
, c
12
(y 1)
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.655786
b = 1.90517
1.64493 6.00000
u = 1.00000
a = 0.401572
b = 0.671044
1.64493 6.00000
u = 1.00000
a = 0.02868 + 1.94846I
b = 0.788105 + 0.401358I
1.64493 6.00000
u = 1.00000
a = 0.02868 1.94846I
b = 0.788105 0.401358I
1.64493 6.00000
25
IV. I
u
4
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
1
=
0
1
a
9
=
1
0
a
4
=
1
1
a
10
=
1
1
a
5
=
1
1
a
2
=
1
0
a
11
=
2
1
a
8
=
2
1
a
3
=
1
0
a
12
=
1
1
a
7
=
1
0
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u 1
c
2
, c
4
, c
6
u
c
3
, c
5
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
c
2
, c
4
, c
6
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
29
V. I
u
5
= hb
5
2b
4
a + b
3
a
2
3b
3
+ 4b
2
a a
2
b + b a + 1, u 1i
(i) Arc colorings
a
1
=
0
1
a
9
=
1
0
a
4
=
a
b
a
10
=
1
1
a
5
=
b
2b a
a
2
=
b
2
2b
2
+ ba + 1
a
11
=
b
4
+ b
3
a + b
2
+ 1
2b
4
+ 3b
3
a b
2
a
2
+ 3b
2
2ba
a
8
=
ba + 1
b
2
a
3
=
b
2
a b + a
b
3
+ b
a
12
=
1
1
a
7
=
b
2
2b
2
ba 1
a
6
=
b
2
a + b
2
b + a
b
3
+ 2b
2
ba + b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
30
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
5
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
31
VI. I
v
1
= ha, b
4
+ b
3
1, v 1i
(i) Arc colorings
a
1
=
1
0
a
9
=
1
0
a
4
=
0
b
a
10
=
1
0
a
5
=
b
b
a
2
=
b
2
+ 1
b
2
a
11
=
b
3
b
2
b
3
1
a
8
=
1
b
2
a
3
=
b
b
3
+ b
a
12
=
1
0
a
7
=
b
2
+ 1
b
2
a
6
=
b
2
b + 1
b
3
+ b
2
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
8
u
4
+ u
3
1
c
2
, c
6
(u 1)
4
c
5
u
4
+ u
2
4u + 1
c
7
, c
11
u
4
u
3
2u
2
+ 1
c
9
, c
12
u
4
c
10
u
4
+ u
3
2u
2
+ 1
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
y
4
y
3
2y
2
+ 1
c
2
, c
6
(y 1)
4
c
5
y
4
+ 2y
3
+ 3y
2
14y + 1
c
7
, c
10
, c
11
y
4
5y
3
+ 6y
2
4y + 1
c
9
, c
12
y
4
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.219447 + 0.914474I
1.64493 6.00000
v = 1.00000
a = 0
b = 0.219447 0.914474I
1.64493 6.00000
v = 1.00000
a = 0
b = 0.819173
1.64493 6.00000
v = 1.00000
a = 0
b = 1.38028
1.64493 6.00000
35
VII. I
v
2
= ha, b 1, v 1i
(i) Arc colorings
a
1
=
1
0
a
9
=
1
0
a
4
=
0
1
a
10
=
1
0
a
5
=
1
1
a
2
=
2
1
a
11
=
1
1
a
8
=
1
1
a
3
=
1
0
a
12
=
1
0
a
7
=
2
1
a
6
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
11
u 1
c
5
, c
9
, c
12
u
c
10
u + 1
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
, c
11
y 1
c
5
, c
9
, c
12
y
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
39
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
16(u 1)
2
(u
4
u
3
2u
2
+ 1)(u
4
+ u
3
1)(u
16
+ 4u
15
+ ··· + 3u + 1)
· (16u
112
+ 8u
111
+ ··· 57723u + 15987)
c
2
u
5
(u 1)
5
(u
16
5u
15
+ ··· + 2u 1)
· (u
112
+ 9u
111
+ ··· 90142u 1132)
c
3
16(u 1)(u + 1)(u
4
+ u
3
1)(u
4
+ u
3
2u
2
+ 1)(u
16
3u
15
+ ··· 3u + 1)
· (16u
112
8u
111
+ ··· 75u + 75)
c
4
48(u)(u 1)(u
4
+ u
2
+ 4u + 1)(u
4
+ u
3
1)(u
16
4u
15
+ ··· + 4u + 1)
· (48u
112
48u
111
+ ··· 1592u 64)
c
5
48(u)(u + 1)(u
4
+ u
2
4u + 1)(u
4
u
3
1)(u
16
+ 4u
15
+ ··· 4u + 1)
· (48u
112
+ 48u
111
+ ··· + 1592u 64)
c
6
u
5
(u 1)
5
(u
16
+ 5u
15
+ ··· 2u 1)
· (u
112
+ 9u
111
+ ··· 90142u 1132)
c
7
16(u 1)(u + 1)(u
4
u
3
1)(u
4
u
3
2u
2
+ 1)(u
16
+ 3u
15
+ ··· + 3u + 1)
· (16u
112
+ 8u
111
+ ··· + 75u + 75)
c
8
16(u 1)(u + 1)(u
4
+ u
3
1)(u
4
+ u
3
2u
2
+ 1)(u
16
+ 3u
15
+ ··· + 3u + 1)
· (16u
112
8u
111
+ ··· 75u + 75)
c
9
u
5
(u + 1)
5
(u
16
+ 5u
15
+ ··· 2u 1)
· (u
112
9u
111
+ ··· + 90142u 1132)
c
10
16(u + 1)
2
(u
4
u
3
1)(u
4
+ u
3
2u
2
+ 1)(u
16
4u
15
+ ··· 3u + 1)
· (16u
112
8u
111
+ ··· + 57723u + 15987)
c
11
16(u 1)(u + 1)(u
4
u
3
1)(u
4
u
3
2u
2
+ 1)(u
16
3u
15
+ ··· 3u + 1)
· (16u
112
+ 8u
111
+ ··· + 75u + 75)
c
12
u
5
(u + 1)
5
(u
16
5u
15
+ ··· + 2u 1)
· (u
112
9u
111
+ ··· + 90142u 1132)
40
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
256(y 1)
2
(y
4
5y
3
+ 6y
2
4y + 1)(y
4
y
3
2y
2
+ 1)
· (y
16
10y
15
+ ··· 13y + 1)
· (256y
112
5152y
111
+ ··· 13093319163y + 255584169)
c
2
, c
6
, c
9
c
12
y
5
(y 1)
5
(y
16
11y
15
+ ··· 8y + 1)
· (y
112
75y
111
+ ··· 5045677580y + 1281424)
c
3
, c
7
, c
8
c
11
256(y 1)
2
(y
4
5y
3
+ 6y
2
4y + 1)(y
4
y
3
2y
2
+ 1)
· (y
16
19y
15
+ ··· 23y + 1)
· (256y
112
16672y
111
+ ··· 439725y + 5625)
c
4
, c
5
2304y(y 1)(y
4
y
3
2y
2
+ 1)(y
4
+ 2y
3
+ 3y
2
14y + 1)
· (y
16
8y
15
+ ··· 6y + 1)
· (2304y
112
11424y
111
+ ··· 1092032y + 4096)
41