12a
1226
(K12a
1226
)
A knot diagram
1
Linearized knot diagam
5 6 8 12 2 10 11 4 1 7 3 9
Solving Sequence
1,5
2 6
3,9
10 7 12 4 8 11
c
1
c
5
c
2
c
9
c
6
c
12
c
4
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.98945 × 10
144
u
84
1.37087 × 10
145
u
83
+ ··· + 1.92650 × 10
144
b 2.91725 × 10
146
,
1.95093 × 10
145
u
84
5.15748 × 10
145
u
83
+ ··· + 1.40635 × 10
146
a 2.25735 × 10
147
,
u
85
4u
84
+ ··· + 788u + 73i
I
u
2
= h−5u
18
+ 13u
17
+ ··· + b 4, u
17
+ 2u
16
+ ··· + a 7u, u
19
u
18
+ ··· + 4u + 1i
I
u
3
= hb 1, u
5
+ 2u
4
+ 2u
3
4u
2
+ a u + 2, u
6
u
5
4u
4
+ 2u
3
+ 4u
2
+ 1i
I
u
4
= hb 1, a, u 1i
* 4 irreducible components of dim
C
= 0, with total 111 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4.99 × 10
144
u
84
1.37 × 10
145
u
83
+ · · · + 1.93 × 10
144
b 2.92 ×
10
146
, 1.95 × 10
145
u
84
5.16 × 10
145
u
83
+ · · · + 1.41 × 10
146
a 2.26 ×
10
147
, u
85
4u
84
+ · · · + 788u + 73i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
0.138723u
84
+ 0.366728u
83
+ ··· + 130.193u + 16.0512
2.58990u
84
+ 7.11584u
83
+ ··· + 1749.52u + 151.427
a
10
=
2.72862u
84
+ 7.48257u
83
+ ··· + 1879.71u + 167.478
2.58990u
84
+ 7.11584u
83
+ ··· + 1749.52u + 151.427
a
7
=
2.92578u
84
8.13708u
83
+ ··· 2024.72u 177.767
2.31664u
84
6.47988u
83
+ ··· 1619.00u 139.768
a
12
=
0.385598u
84
1.10673u
83
+ ··· 283.400u 21.1009
3.41608u
84
9.58363u
83
+ ··· 2437.49u 209.431
a
4
=
0.561858u
84
+ 1.48323u
83
+ ··· + 383.494u + 32.0573
2.75914u
84
7.81915u
83
+ ··· 1999.66u 171.708
a
8
=
0.715497u
84
2.08191u
83
+ ··· 538.570u 40.4914
1.93432u
84
5.25535u
83
+ ··· 1247.86u 107.161
a
11
=
1.00130u
84
2.85966u
83
+ ··· 737.962u 59.9423
1.84070u
84
5.11536u
83
+ ··· 1289.48u 110.827
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.89483u
84
19.7102u
83
+ ··· 4933.58u 411.467
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
85
+ 4u
84
+ ··· + 788u 73
c
3
, c
8
u
85
+ 2u
84
+ ··· 13u 1
c
4
u
85
2u
84
+ ··· 10671u 1901
c
6
, c
7
, c
10
u
85
3u
84
+ ··· + 10u + 1
c
9
, c
12
u
85
+ 9u
84
+ ··· 956u 536
c
11
u
85
+ 6u
84
+ ··· 675913u + 208517
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
85
80y
84
+ ··· + 416398y 5329
c
3
, c
8
y
85
72y
84
+ ··· 3y 1
c
4
y
85
+ 16y
84
+ ··· 16272219y 3613801
c
6
, c
7
, c
10
y
85
93y
84
+ ··· + 246y 1
c
9
, c
12
y
85
63y
84
+ ··· 14389936y 287296
c
11
y
85
+ 36y
84
+ ··· + 2472814918725y 43479339289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.624130 + 0.677501I
a = 1.27325 0.82874I
b = 1.172910 + 0.299627I
5.48537 3.36947I 0
u = 0.624130 0.677501I
a = 1.27325 + 0.82874I
b = 1.172910 0.299627I
5.48537 + 3.36947I 0
u = 0.409379 + 1.002590I
a = 1.68599 + 0.21190I
b = 1.40263 + 0.44403I
13.5552 + 11.4881I 0
u = 0.409379 1.002590I
a = 1.68599 0.21190I
b = 1.40263 0.44403I
13.5552 11.4881I 0
u = 1.12445
a = 1.58307
b = 1.67518
11.2991 0
u = 0.301457 + 0.815530I
a = 1.80925 + 0.18621I
b = 1.029340 + 0.250303I
1.17315 3.20365I 0
u = 0.301457 0.815530I
a = 1.80925 0.18621I
b = 1.029340 0.250303I
1.17315 + 3.20365I 0
u = 1.149180 + 0.081342I
a = 1.03377 + 1.54266I
b = 0.850018 0.005837I
6.06553 + 5.53345I 0
u = 1.149180 0.081342I
a = 1.03377 1.54266I
b = 0.850018 + 0.005837I
6.06553 5.53345I 0
u = 1.164800 + 0.089757I
a = 0.52166 1.45972I
b = 0.799484 0.495047I
1.60587 0.73292I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.164800 0.089757I
a = 0.52166 + 1.45972I
b = 0.799484 + 0.495047I
1.60587 + 0.73292I 0
u = 1.16926
a = 0.845667
b = 1.78576
6.73023 0
u = 0.192937 + 1.154220I
a = 1.44238 0.07519I
b = 1.087730 0.364012I
6.71901 5.49463I 0
u = 0.192937 1.154220I
a = 1.44238 + 0.07519I
b = 1.087730 + 0.364012I
6.71901 + 5.49463I 0
u = 0.360617 + 0.745031I
a = 2.20948 0.41944I
b = 1.300800 0.407023I
6.28975 + 7.97133I 7.38430 8.02100I
u = 0.360617 0.745031I
a = 2.20948 + 0.41944I
b = 1.300800 + 0.407023I
6.28975 7.97133I 7.38430 + 8.02100I
u = 1.198080 + 0.082837I
a = 0.214684 + 1.075630I
b = 1.12156 + 0.98848I
5.68630 4.05640I 0
u = 1.198080 0.082837I
a = 0.214684 1.075630I
b = 1.12156 0.98848I
5.68630 + 4.05640I 0
u = 1.20730
a = 0.288478
b = 2.30164
10.5815 0
u = 0.345771 + 0.669877I
a = 1.28934 + 1.71832I
b = 1.339630 0.095594I
12.65180 2.38566I 11.28357 + 3.13973I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.345771 0.669877I
a = 1.28934 1.71832I
b = 1.339630 + 0.095594I
12.65180 + 2.38566I 11.28357 3.13973I
u = 0.369159 + 0.631904I
a = 1.18727 0.96387I
b = 1.314670 0.246770I
8.21278 + 1.87881I 10.83009 0.57094I
u = 0.369159 0.631904I
a = 1.18727 + 0.96387I
b = 1.314670 + 0.246770I
8.21278 1.87881I 10.83009 + 0.57094I
u = 0.395662 + 0.581191I
a = 1.48354 + 0.44038I
b = 1.60987 + 0.54830I
12.29370 1.36558I 11.35480 + 4.41215I
u = 0.395662 0.581191I
a = 1.48354 0.44038I
b = 1.60987 0.54830I
12.29370 + 1.36558I 11.35480 4.41215I
u = 0.252051 + 0.653041I
a = 0.757441 + 0.041642I
b = 0.067707 + 0.675510I
3.87059 1.76215I 3.74742 + 3.64728I
u = 0.252051 0.653041I
a = 0.757441 0.041642I
b = 0.067707 0.675510I
3.87059 + 1.76215I 3.74742 3.64728I
u = 0.323184 + 0.612844I
a = 1.34257 1.28161I
b = 0.014273 + 0.180616I
8.16304 3.16907I 8.19689 1.41717I
u = 0.323184 0.612844I
a = 1.34257 + 1.28161I
b = 0.014273 0.180616I
8.16304 + 3.16907I 8.19689 + 1.41717I
u = 0.910397 + 0.940971I
a = 0.942683 + 0.660065I
b = 1.261770 0.234880I
12.19520 5.09209I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.910397 0.940971I
a = 0.942683 0.660065I
b = 1.261770 + 0.234880I
12.19520 + 5.09209I 0
u = 1.31174
a = 0.512904
b = 1.29127
1.49689 0
u = 1.310290 + 0.142010I
a = 0.460124 1.144650I
b = 0.950477 0.477408I
2.39006 2.09627I 0
u = 1.310290 0.142010I
a = 0.460124 + 1.144650I
b = 0.950477 + 0.477408I
2.39006 + 2.09627I 0
u = 1.315430 + 0.140434I
a = 0.389970 + 0.923304I
b = 1.30169 + 0.95849I
1.18769 + 4.19202I 0
u = 1.315430 0.140434I
a = 0.389970 0.923304I
b = 1.30169 0.95849I
1.18769 4.19202I 0
u = 1.333230 + 0.195789I
a = 1.47363 1.02765I
b = 1.40909 0.37140I
1.00589 5.05324I 0
u = 1.333230 0.195789I
a = 1.47363 + 1.02765I
b = 1.40909 + 0.37140I
1.00589 + 5.05324I 0
u = 1.353310 + 0.168736I
a = 1.135850 + 0.671511I
b = 1.275170 + 0.382326I
2.89149 + 2.20435I 0
u = 1.353310 0.168736I
a = 1.135850 0.671511I
b = 1.275170 0.382326I
2.89149 2.20435I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.260065 + 0.576274I
a = 0.138226 + 0.392642I
b = 0.337232 1.153370I
8.20231 + 6.17948I 8.20026 7.53712I
u = 0.260065 0.576274I
a = 0.138226 0.392642I
b = 0.337232 + 1.153370I
8.20231 6.17948I 8.20026 + 7.53712I
u = 0.400208 + 0.472091I
a = 0.384579 0.514091I
b = 0.143077 + 0.872180I
1.90136 + 3.46440I 4.11990 8.09520I
u = 0.400208 0.472091I
a = 0.384579 + 0.514091I
b = 0.143077 0.872180I
1.90136 3.46440I 4.11990 + 8.09520I
u = 0.524761 + 0.282395I
a = 0.431371 + 0.231054I
b = 0.168767 0.371547I
1.053160 0.578747I 6.16527 + 2.76686I
u = 0.524761 0.282395I
a = 0.431371 0.231054I
b = 0.168767 + 0.371547I
1.053160 + 0.578747I 6.16527 2.76686I
u = 1.347350 + 0.409713I
a = 0.949410 + 0.561746I
b = 0.935806 + 0.242242I
1.77639 1.77523I 0
u = 1.347350 0.409713I
a = 0.949410 0.561746I
b = 0.935806 0.242242I
1.77639 + 1.77523I 0
u = 1.387010 + 0.261595I
a = 0.036469 0.262545I
b = 0.347098 1.080660I
1.31353 + 5.12324I 0
u = 1.387010 0.261595I
a = 0.036469 + 0.262545I
b = 0.347098 + 1.080660I
1.31353 5.12324I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40272 + 0.23901I
a = 0.252195 + 0.345108I
b = 0.01364 + 1.55109I
2.87646 9.22644I 0
u = 1.40272 0.23901I
a = 0.252195 0.345108I
b = 0.01364 1.55109I
2.87646 + 9.22644I 0
u = 0.375540 + 0.431749I
a = 1.146050 + 0.602010I
b = 0.047218 0.523660I
1.96018 0.39806I 4.48273 0.63616I
u = 0.375540 0.431749I
a = 1.146050 0.602010I
b = 0.047218 + 0.523660I
1.96018 + 0.39806I 4.48273 + 0.63616I
u = 1.38602 + 0.37040I
a = 0.400754 + 0.063344I
b = 0.711046 + 0.385814I
2.31278 0.56245I 0
u = 1.38602 0.37040I
a = 0.400754 0.063344I
b = 0.711046 0.385814I
2.31278 + 0.56245I 0
u = 1.43721 + 0.03949I
a = 0.501581 + 0.307898I
b = 0.100119 + 0.665742I
3.84830 1.03714I 0
u = 1.43721 0.03949I
a = 0.501581 0.307898I
b = 0.100119 0.665742I
3.84830 + 1.03714I 0
u = 1.43195 + 0.14709I
a = 0.329587 0.361408I
b = 0.027993 1.196330I
3.98333 5.67696I 0
u = 1.43195 0.14709I
a = 0.329587 + 0.361408I
b = 0.027993 + 1.196330I
3.98333 + 5.67696I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42782 + 0.30450I
a = 1.029350 0.806960I
b = 1.203740 0.522812I
4.35157 + 7.18408I 0
u = 1.42782 0.30450I
a = 1.029350 + 0.806960I
b = 1.203740 + 0.522812I
4.35157 7.18408I 0
u = 1.45967 + 0.09531I
a = 0.022628 + 0.249071I
b = 0.182505 + 0.900172I
7.48171 + 2.02794I 0
u = 1.45967 0.09531I
a = 0.022628 0.249071I
b = 0.182505 0.900172I
7.48171 2.02794I 0
u = 0.058099 + 0.526758I
a = 3.74437 0.86928I
b = 1.226770 + 0.248698I
5.43767 + 2.43332I 12.27217 3.91915I
u = 0.058099 0.526758I
a = 3.74437 + 0.86928I
b = 1.226770 0.248698I
5.43767 2.43332I 12.27217 + 3.91915I
u = 1.44411 + 0.28089I
a = 0.124422 1.264770I
b = 1.062120 0.060649I
6.90944 + 5.91266I 0
u = 1.44411 0.28089I
a = 0.124422 + 1.264770I
b = 1.062120 + 0.060649I
6.90944 5.91266I 0
u = 1.44817 + 0.26550I
a = 0.250173 + 0.920078I
b = 1.070750 + 0.553524I
2.37812 5.23342I 0
u = 1.44817 0.26550I
a = 0.250173 0.920078I
b = 1.070750 0.553524I
2.37812 + 5.23342I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44320 + 0.29402I
a = 1.07173 + 1.00849I
b = 1.40089 + 0.55110I
0.53532 11.75990I 0
u = 1.44320 0.29402I
a = 1.07173 1.00849I
b = 1.40089 0.55110I
0.53532 + 11.75990I 0
u = 1.45461 + 0.24376I
a = 0.389692 0.802347I
b = 1.41742 1.00679I
6.34695 + 4.48091I 0
u = 1.45461 0.24376I
a = 0.389692 + 0.802347I
b = 1.41742 + 1.00679I
6.34695 4.48091I 0
u = 1.28916 + 0.74858I
a = 1.223760 0.579291I
b = 0.863011 0.274783I
2.61452 3.50027I 0
u = 1.28916 0.74858I
a = 1.223760 + 0.579291I
b = 0.863011 + 0.274783I
2.61452 + 3.50027I 0
u = 0.000669 + 0.479428I
a = 2.21076 + 0.10853I
b = 1.33078 0.51074I
5.30975 2.02687I 14.9012 + 3.2094I
u = 0.000669 0.479428I
a = 2.21076 0.10853I
b = 1.33078 + 0.51074I
5.30975 + 2.02687I 14.9012 3.2094I
u = 1.45774 + 0.44477I
a = 0.986710 + 0.825536I
b = 1.192490 + 0.605367I
1.39761 + 11.05220I 0
u = 1.45774 0.44477I
a = 0.986710 0.825536I
b = 1.192490 0.605367I
1.39761 11.05220I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50394 + 0.39283I
a = 0.947921 0.892330I
b = 1.44979 0.64447I
7.4665 16.5073I 0
u = 1.50394 0.39283I
a = 0.947921 + 0.892330I
b = 1.44979 + 0.64447I
7.4665 + 16.5073I 0
u = 1.63342
a = 0.200193
b = 0.420791
7.19573 0
u = 1.72107
a = 0.418682
b = 0.809091
3.01365 0
u = 0.106379
a = 5.09497
b = 0.447981
0.879411 12.9870
13
II. I
u
2
=
h−5u
18
+13u
17
+· · ·+b4, u
17
+2u
16
+· · ·+a7u, u
19
u
18
+· · ·+4u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
17
2u
16
+ ··· 4u
2
+ 7u
5u
18
13u
17
+ ··· + 12u + 4
a
10
=
5u
18
12u
17
+ ··· + 19u + 4
5u
18
13u
17
+ ··· + 12u + 4
a
7
=
2u
18
+ 4u
17
+ ··· 8u 2
3u
18
7u
17
+ ··· + 7u
2
+ 5u
a
12
=
3u
18
5u
17
+ ··· + 20u + 6
2u
18
+ 5u
17
+ ··· 9u 1
a
4
=
2u
18
7u
17
+ ··· 5u + 2
3u
18
+ 6u
17
+ ··· 7u 5
a
8
=
4u
18
+ 9u
17
+ ··· 14u 1
4u
18
+ 9u
17
+ ··· 7u 3
a
11
=
3u
18
5u
17
+ ··· + 18u + 6
u
18
+ 3u
17
+ ··· 3u
2
6u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
18
12u
17
84u
16
+ 122u
15
+ 366u
14
508u
13
858u
12
+ 1087u
11
+ 1167u
10
1187u
9
913u
8
+ 474u
7
+ 369u
6
+ 174u
5
43u
4
150u
3
15u
2
+ 7u + 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
19
u
18
+ ··· + 4u + 1
c
3
u
19
+ u
18
+ ··· u 1
c
4
u
19
+ u
18
+ ··· + u 1
c
5
u
19
+ u
18
+ ··· + 4u 1
c
6
, c
7
u
19
2u
18
+ ··· + 2u 1
c
8
u
19
u
18
+ ··· u + 1
c
9
u
19
3u
18
+ ··· + 7u + 1
c
10
u
19
+ 2u
18
+ ··· + 2u + 1
c
11
u
19
u
18
+ ··· + 5u 1
c
12
u
19
+ 3u
18
+ ··· + 7u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
19
25y
18
+ ··· + 6y 1
c
3
, c
8
y
19
21y
18
+ ··· + 45y 1
c
4
y
19
+ 3y
18
+ ··· + 13y 1
c
6
, c
7
, c
10
y
19
22y
18
+ ··· + 10y 1
c
9
, c
12
y
19
21y
18
+ ··· + 61y 1
c
11
y
19
+ 3y
18
+ ··· + 9y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.10278
a = 0.720093
b = 1.70355
6.99800 17.7350
u = 1.26024
a = 0.906514
b = 2.09527
9.84855 0.542410
u = 1.253900 + 0.227809I
a = 0.900344 0.843791I
b = 1.020270 0.265725I
1.12863 1.33201I 5.39680 0.05843I
u = 1.253900 0.227809I
a = 0.900344 + 0.843791I
b = 1.020270 + 0.265725I
1.12863 + 1.33201I 5.39680 + 0.05843I
u = 1.327440 + 0.099919I
a = 0.693739 + 1.130910I
b = 1.32837 + 0.65411I
0.65874 + 3.18643I 2.84941 0.30702I
u = 1.327440 0.099919I
a = 0.693739 1.130910I
b = 1.32837 0.65411I
0.65874 3.18643I 2.84941 + 0.30702I
u = 1.374240 + 0.196813I
a = 0.000109 1.119420I
b = 0.831567 0.883831I
4.21440 + 7.04159I 4.96365 5.87415I
u = 1.374240 0.196813I
a = 0.000109 + 1.119420I
b = 0.831567 + 0.883831I
4.21440 7.04159I 4.96365 + 5.87415I
u = 0.134296 + 0.586065I
a = 2.35029 + 0.60951I
b = 0.916608 + 0.500115I
8.54052 4.44138I 11.11085 + 4.14729I
u = 0.134296 0.586065I
a = 2.35029 0.60951I
b = 0.916608 0.500115I
8.54052 + 4.44138I 11.11085 4.14729I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.35294 + 0.54742I
a = 0.862592 + 0.861954I
b = 0.811030 + 0.265564I
2.63803 2.91120I 5.09455 1.50399I
u = 1.35294 0.54742I
a = 0.862592 0.861954I
b = 0.811030 0.265564I
2.63803 + 2.91120I 5.09455 + 1.50399I
u = 0.539160
a = 1.08291
b = 0.394778
0.237359 2.52210
u = 0.466068
a = 0.590861
b = 1.72859
12.7186 13.7870
u = 1.60823
a = 0.305684
b = 0.150405
7.38733 19.5130
u = 0.223965 + 0.281328I
a = 2.57318 + 2.47101I
b = 1.161660 0.354877I
4.49875 1.89485I 3.37367 + 0.19461I
u = 0.223965 0.281328I
a = 2.57318 2.47101I
b = 1.161660 + 0.354877I
4.49875 + 1.89485I 3.37367 0.19461I
u = 1.68023
a = 0.254506
b = 0.846729
2.79077 17.2130
u = 1.91856
a = 0.739137
b = 0.766706
0.749611 6.82050
18
III.
I
u
3
= hb 1, u
5
+ 2u
4
+ 2u
3
4u
2
+ a u + 2, u
6
u
5
4u
4
+ 2u
3
+ 4u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
5
2u
4
2u
3
+ 4u
2
+ u 2
1
a
10
=
u
5
2u
4
2u
3
+ 4u
2
+ u 1
1
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
12
=
u
5
2u
4
2u
3
+ 4u
2
+ u 1
1
a
4
=
u
4
2u
3
u
2
+ 2u + 1
u
5
+ 2u
4
+ 2u
3
3u
2
1
a
8
=
u
3
+ 2u
2
2
u
5
+ 2u
4
+ u
3
4u
2
+ u
a
11
=
u
5
3u
4
2u
3
+ 6u
2
+ 2u
u
5
+ 2u
3
+ u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
6
+ u
5
4u
4
2u
3
+ 4u
2
+ 1
c
3
, c
8
u
6
u
5
4u
4
+ 2u
3
+ 4u
2
+ 1
c
4
u
6
u
5
+ 4u
4
+ 4u
3
2u
2
+ 4u + 1
c
6
, c
7
, c
10
c
11
u
6
u
5
2u
2
+ 2u 1
c
9
, c
12
(u 1)
6
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
8
y
6
9y
5
+ 28y
4
34y
3
+ 8y
2
+ 8y + 1
c
4
y
6
+ 7y
5
+ 20y
4
22y
3
20y
2
20y + 1
c
6
, c
7
, c
10
c
11
y
6
y
5
4y
4
+ 2y
3
+ 4y
2
+ 1
c
9
, c
12
(y 1)
6
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.280890 + 0.160943I
a = 0.60066 + 1.69666I
b = 1.00000
1.64493 6.00000
u = 1.280890 0.160943I
a = 0.60066 1.69666I
b = 1.00000
1.64493 6.00000
u = 1.53631
a = 0.857960
b = 1.00000
1.64493 6.00000
u = 0.037401 + 0.445898I
a = 2.77623 + 0.79561I
b = 1.00000
1.64493 6.00000
u = 0.037401 0.445898I
a = 2.77623 0.79561I
b = 1.00000
1.64493 6.00000
u = 1.95066
a = 0.388251
b = 1.00000
1.64493 6.00000
22
IV. I
u
4
= hb 1, a, u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
6
=
1
0
a
3
=
0
1
a
9
=
0
1
a
10
=
1
1
a
7
=
0
1
a
12
=
1
1
a
4
=
1
2
a
8
=
1
1
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
10
, c
11
u + 1
c
3
, c
8
, c
9
c
12
u 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u + 1)(u
6
+ u
5
+ ··· + 4u
2
+ 1)(u
19
u
18
+ ··· + 4u + 1)
· (u
85
+ 4u
84
+ ··· + 788u 73)
c
3
(u 1)(u
6
u
5
+ ··· + 4u
2
+ 1)(u
19
+ u
18
+ ··· u 1)
· (u
85
+ 2u
84
+ ··· 13u 1)
c
4
(u + 1)(u
6
u
5
+ ··· + 4u + 1)(u
19
+ u
18
+ ··· + u 1)
· (u
85
2u
84
+ ··· 10671u 1901)
c
5
(u + 1)(u
6
+ u
5
+ ··· + 4u
2
+ 1)(u
19
+ u
18
+ ··· + 4u 1)
· (u
85
+ 4u
84
+ ··· + 788u 73)
c
6
, c
7
(u + 1)(u
6
u
5
2u
2
+ 2u 1)(u
19
2u
18
+ ··· + 2u 1)
· (u
85
3u
84
+ ··· + 10u + 1)
c
8
(u 1)(u
6
u
5
+ ··· + 4u
2
+ 1)(u
19
u
18
+ ··· u + 1)
· (u
85
+ 2u
84
+ ··· 13u 1)
c
9
((u 1)
7
)(u
19
3u
18
+ ··· + 7u + 1)(u
85
+ 9u
84
+ ··· 956u 536)
c
10
(u + 1)(u
6
u
5
2u
2
+ 2u 1)(u
19
+ 2u
18
+ ··· + 2u + 1)
· (u
85
3u
84
+ ··· + 10u + 1)
c
11
(u + 1)(u
6
u
5
2u
2
+ 2u 1)(u
19
u
18
+ ··· + 5u 1)
· (u
85
+ 6u
84
+ ··· 675913u + 208517)
c
12
((u 1)
7
)(u
19
+ 3u
18
+ ··· + 7u 1)(u
85
+ 9u
84
+ ··· 956u 536)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)(y
6
9y
5
+ 28y
4
34y
3
+ 8y
2
+ 8y + 1)
· (y
19
25y
18
+ ··· + 6y 1)(y
85
80y
84
+ ··· + 416398y 5329)
c
3
, c
8
(y 1)(y
6
9y
5
+ 28y
4
34y
3
+ 8y
2
+ 8y + 1)
· (y
19
21y
18
+ ··· + 45y 1)(y
85
72y
84
+ ··· 3y 1)
c
4
(y 1)(y
6
+ 7y
5
+ 20y
4
22y
3
20y
2
20y + 1)
· (y
19
+ 3y
18
+ ··· + 13y 1)
· (y
85
+ 16y
84
+ ··· 16272219y 3613801)
c
6
, c
7
, c
10
(y 1)(y
6
y
5
+ ··· + 4y
2
+ 1)(y
19
22y
18
+ ··· + 10y 1)
· (y
85
93y
84
+ ··· + 246y 1)
c
9
, c
12
((y 1)
7
)(y
19
21y
18
+ ··· + 61y 1)
· (y
85
63y
84
+ ··· 14389936y 287296)
c
11
(y 1)(y
6
y
5
+ ··· + 4y
2
+ 1)(y
19
+ 3y
18
+ ··· + 9y 1)
· (y
85
+ 36y
84
+ ··· + 2472814918725y 43479339289)
28