10
118
(K10a
88
)
A knot diagram
1
Linearized knot diagam
8 6 1 2 9 10 4 5 3 7
Solving Sequence
4,7 1,8
2 5 3 10 6 9
c
7
c
1
c
4
c
3
c
10
c
6
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h2.17049 × 10
128
u
55
+ 7.04965 × 10
128
u
54
+ ··· + 1.13515 × 10
129
b + 3.31225 × 10
128
,
6.03461 × 10
129
u
55
1.05486 × 10
130
u
54
+ ··· + 3.29192 × 10
130
a + 8.03066 × 10
131
,
u
56
+ 3u
55
+ ··· 86u 29i
I
u
2
= hu
7
u
5
+ 2u
4
+ 2u
3
+ 3u
2
+ 2b 1, 2u
7
u
6
u
5
+ 5u
4
+ 3u
3
+ 3u
2
+ 2a + 2,
u
8
u
6
+ 2u
5
+ 3u
4
+ 2u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.17 × 10
128
u
55
+ 7.05 × 10
128
u
54
+ · · · + 1.14 × 10
129
b + 3.31 ×
10
128
, 6.03 × 10
129
u
55
1.05 × 10
130
u
54
+ · · · + 3.29 × 10
130
a + 8.03 ×
10
131
, u
56
+ 3u
55
+ · · · 86u 29i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
1
=
0.183316u
55
+ 0.320439u
54
+ ··· 36.3951u 24.3951
0.191208u
55
0.621035u
54
+ ··· 24.1471u 0.291791
a
8
=
1
u
2
a
2
=
0.329942u
55
+ 0.877435u
54
+ ··· + 2.17359u 17.4475
0.228740u
55
0.774692u
54
+ ··· 38.4713u 3.68817
a
5
=
0.00194160u
55
+ 0.125899u
54
+ ··· + 24.9331u 7.18816
0.0511468u
55
0.283014u
54
+ ··· 27.4710u 5.28083
a
3
=
0.143680u
55
0.426284u
54
+ ··· 13.1771u 13.3885
0.0842120u
55
+ 0.155045u
54
+ ··· 15.2642u 4.53960
a
10
=
0.374524u
55
+ 0.941474u
54
+ ··· 12.2480u 24.1033
0.191208u
55
0.621035u
54
+ ··· 24.1471u 0.291791
a
6
=
0.225711u
55
0.655623u
54
+ ··· + 8.05046u 6.26808
0.0691731u
55
+ 0.270220u
54
+ ··· + 4.64014u + 4.46620
a
9
=
0.120671u
55
0.252131u
54
+ ··· + 25.1490u 10.2596
0.0170410u
55
0.154222u
54
+ ··· 24.0061u 3.26683
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0612869u
55
0.0909872u
54
+ ··· 11.4095u 14.5506
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 3u
55
+ ··· 86u 29
c
2
u
56
u
54
+ ··· 12u + 1
c
3
u
56
+ 3u
55
+ ··· 23u + 1
c
4
u
56
3u
55
+ ··· + 23u + 1
c
5
, c
8
u
56
+ u
55
+ ··· 21u 1
c
6
, c
10
u
56
u
55
+ ··· + 21u 1
c
7
u
56
3u
55
+ ··· + 86u 29
c
9
u
56
u
54
+ ··· + 12u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
56
13y
55
+ ··· 26246y + 841
c
2
, c
9
y
56
2y
55
+ ··· 526y + 1
c
3
, c
4
y
56
+ 5y
55
+ ··· 155y + 1
c
5
, c
6
, c
8
c
10
y
56
41y
55
+ ··· 91y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.783480 + 0.627461I
a = 0.378022 0.391050I
b = 0.230315 + 0.038880I
1.26494 1.26950I 4.50876 + 0.89106I
u = 0.783480 0.627461I
a = 0.378022 + 0.391050I
b = 0.230315 0.038880I
1.26494 + 1.26950I 4.50876 0.89106I
u = 0.867481 + 0.465833I
a = 0.535992 1.067720I
b = 0.486169 0.719576I
3.60092 1.79783I 4.19052 + 2.40869I
u = 0.867481 0.465833I
a = 0.535992 + 1.067720I
b = 0.486169 + 0.719576I
3.60092 + 1.79783I 4.19052 2.40869I
u = 0.671481 + 0.714028I
a = 0.790076 0.970719I
b = 0.1029550 0.0679357I
1.91385 + 4.83850I 2.53419 6.95729I
u = 0.671481 0.714028I
a = 0.790076 + 0.970719I
b = 0.1029550 + 0.0679357I
1.91385 4.83850I 2.53419 + 6.95729I
u = 0.907848 + 0.325017I
a = 0.02327 1.45567I
b = 1.32128 0.52561I
2.56248 7.32114I 3.13433 + 7.29187I
u = 0.907848 0.325017I
a = 0.02327 + 1.45567I
b = 1.32128 + 0.52561I
2.56248 + 7.32114I 3.13433 7.29187I
u = 0.614585 + 0.660088I
a = 0.771966 0.367815I
b = 0.794571 0.247178I
3.06725 0.91106I 2.78612 + 2.04256I
u = 0.614585 0.660088I
a = 0.771966 + 0.367815I
b = 0.794571 + 0.247178I
3.06725 + 0.91106I 2.78612 2.04256I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.495818 + 0.985480I
a = 0.66594 1.42520I
b = 1.291500 0.294118I
1.18098 + 5.45507I 4.29936 4.75401I
u = 0.495818 0.985480I
a = 0.66594 + 1.42520I
b = 1.291500 + 0.294118I
1.18098 5.45507I 4.29936 + 4.75401I
u = 1.048230 + 0.400499I
a = 0.072661 + 0.652197I
b = 1.230370 + 0.109087I
3.06725 0.91106I 2.78612 + 2.04256I
u = 1.048230 0.400499I
a = 0.072661 0.652197I
b = 1.230370 0.109087I
3.06725 + 0.91106I 2.78612 2.04256I
u = 1.13343
a = 1.35973
b = 1.44691
1.54290 6.38460
u = 0.874453 + 0.768327I
a = 0.122940 1.406550I
b = 1.197120 0.303609I
1.91385 4.83850I 2.53419 + 6.95729I
u = 0.874453 0.768327I
a = 0.122940 + 1.406550I
b = 1.197120 + 0.303609I
1.91385 + 4.83850I 2.53419 6.95729I
u = 0.987700 + 0.648175I
a = 0.09787 1.65319I
b = 1.007190 0.370280I
2.03150 + 6.02280I 3.73094 6.75893I
u = 0.987700 0.648175I
a = 0.09787 + 1.65319I
b = 1.007190 + 0.370280I
2.03150 6.02280I 3.73094 + 6.75893I
u = 0.330263 + 0.747920I
a = 0.02506 1.66118I
b = 0.063233 0.654816I
5.38278 1.94709I 9.07863 + 3.78322I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.330263 0.747920I
a = 0.02506 + 1.66118I
b = 0.063233 + 0.654816I
5.38278 + 1.94709I 9.07863 3.78322I
u = 0.768372 + 0.912758I
a = 0.078803 + 0.713454I
b = 0.213245 + 1.196470I
3.96282I 0. + 12.03346I
u = 0.768372 0.912758I
a = 0.078803 0.713454I
b = 0.213245 1.196470I
3.96282I 0. 12.03346I
u = 0.768710 + 0.080853I
a = 1.18088 + 1.64494I
b = 1.224820 0.066557I
5.38278 1.94709I 9.07863 + 3.78322I
u = 0.768710 0.080853I
a = 1.18088 1.64494I
b = 1.224820 + 0.066557I
5.38278 + 1.94709I 9.07863 3.78322I
u = 0.417667 + 0.587372I
a = 0.020230 + 0.413680I
b = 1.13926 + 1.00938I
2.12732 2.99186I 13.6584 + 6.9170I
u = 0.417667 0.587372I
a = 0.020230 0.413680I
b = 1.13926 1.00938I
2.12732 + 2.99186I 13.6584 6.9170I
u = 1.28361
a = 1.43131
b = 0.991270
3.28334 1.95800
u = 0.695004 + 0.172107I
a = 0.37195 1.39210I
b = 1.46649 0.46691I
5.06898 + 2.94565I 6.46008 3.65784I
u = 0.695004 0.172107I
a = 0.37195 + 1.39210I
b = 1.46649 + 0.46691I
5.06898 2.94565I 6.46008 + 3.65784I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.951068 + 0.899353I
a = 0.187043 + 0.873695I
b = 0.179049 + 1.120190I
5.00346 + 9.83371I 0
u = 0.951068 0.899353I
a = 0.187043 0.873695I
b = 0.179049 1.120190I
5.00346 9.83371I 0
u = 0.531582 + 0.418877I
a = 0.345342 1.304770I
b = 0.165425 0.641483I
1.26494 + 1.26950I 4.50876 0.89106I
u = 0.531582 0.418877I
a = 0.345342 + 1.304770I
b = 0.165425 + 0.641483I
1.26494 1.26950I 4.50876 + 0.89106I
u = 0.246039 + 1.330330I
a = 0.109393 + 0.201685I
b = 0.925946 + 0.365281I
1.17763 1.90833I 0
u = 0.246039 1.330330I
a = 0.109393 0.201685I
b = 0.925946 0.365281I
1.17763 + 1.90833I 0
u = 1.36704
a = 0.0603515
b = 1.39639
3.28334 0
u = 0.606940 + 0.092167I
a = 0.587067 + 0.957007I
b = 0.141834 + 0.920236I
1.17763 1.90833I 2.60907 + 2.19068I
u = 0.606940 0.092167I
a = 0.587067 0.957007I
b = 0.141834 0.920236I
1.17763 + 1.90833I 2.60907 2.19068I
u = 0.964815 + 1.009120I
a = 0.473801 + 0.532980I
b = 0.301392 + 0.797095I
5.06898 2.94565I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964815 1.009120I
a = 0.473801 0.532980I
b = 0.301392 0.797095I
5.06898 + 2.94565I 0
u = 0.584292 + 0.088844I
a = 0.95463 + 3.53861I
b = 1.181570 0.095549I
1.18098 + 5.45507I 4.29936 4.75401I
u = 0.584292 0.088844I
a = 0.95463 3.53861I
b = 1.181570 + 0.095549I
1.18098 5.45507I 4.29936 + 4.75401I
u = 1.29911 + 0.91025I
a = 0.216573 + 1.073080I
b = 1.42481 + 0.50052I
15.5452I 0
u = 1.29911 0.91025I
a = 0.216573 1.073080I
b = 1.42481 0.50052I
15.5452I 0
u = 1.33347 + 0.88382I
a = 0.220110 + 0.911869I
b = 1.41775 + 0.50903I
5.00346 + 9.83371I 0
u = 1.33347 0.88382I
a = 0.220110 0.911869I
b = 1.41775 0.50903I
5.00346 9.83371I 0
u = 0.44552 + 1.55785I
a = 0.212043 + 0.191232I
b = 1.114910 + 0.395467I
2.56248 + 7.32114I 0
u = 0.44552 1.55785I
a = 0.212043 0.191232I
b = 1.114910 0.395467I
2.56248 7.32114I 0
u = 1.16393 + 1.16318I
a = 0.188659 0.820953I
b = 1.234890 0.135915I
2.03150 6.02280I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16393 1.16318I
a = 0.188659 + 0.820953I
b = 1.234890 + 0.135915I
2.03150 + 6.02280I 0
u = 1.34569 + 0.94875I
a = 0.236623 + 0.596957I
b = 1.32213 + 0.64789I
2.12732 2.99186I 0
u = 1.34569 0.94875I
a = 0.236623 0.596957I
b = 1.32213 0.64789I
2.12732 + 2.99186I 0
u = 0.299877
a = 4.00586
b = 1.49366
1.54290 6.38460
u = 1.63614 + 0.85817I
a = 0.236114 0.548173I
b = 1.130060 0.065159I
3.60092 + 1.79783I 0
u = 1.63614 0.85817I
a = 0.236114 + 0.548173I
b = 1.130060 + 0.065159I
3.60092 1.79783I 0
10
II. I
u
2
= hu
7
u
5
+ 2u
4
+ 2u
3
+ 3u
2
+ 2b 1, 2u
7
u
6
u
5
+ 5u
4
+ 3u
3
+
3u
2
+ 2a + 2, u
8
u
6
+ 2u
5
+ 3u
4
+ 2u
3
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
1
=
u
7
+
1
2
u
6
+ ···
3
2
u
2
1
1
2
u
7
+
1
2
u
5
+ ···
3
2
u
2
+
1
2
a
8
=
1
u
2
a
2
=
1
2
u
6
1
2
u
5
+ ··· u 1
1
2
u
7
+
1
2
u
5
+ ··· + u +
1
2
a
5
=
1
2
u
7
1
2
u
5
+ ··· +
3
2
u + 1
1
2
u
5
+
1
2
u
4
+ ··· +
1
2
u 1
a
3
=
1
2
u
7
+ u
6
+ ··· +
1
2
u 1
1
2
u
5
+
1
2
u
4
+ ···
3
2
u
2
+
1
2
u
a
10
=
1
2
u
7
+
1
2
u
6
+ ···
1
2
u
3
3
2
1
2
u
7
+
1
2
u
5
+ ···
3
2
u
2
+
1
2
a
6
=
1
2
u
7
+
1
2
u
4
+ ···
1
2
u +
1
2
1
2
u
7
u
4
u
3
3
2
u
2
u
a
9
=
u
7
1
2
u
6
+ ···
3
2
u +
1
2
1
2
u
7
u
6
+ 2u
4
u
3
3
2
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ u
6
+ u
5
5u
4
10u
3
14u
2
+ 4u 1
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
u
6
2u
5
+ 3u
4
2u
3
u
2
+ 1
c
2
u
8
u
7
+ u
6
+ u
5
2u
4
u
3
3u
2
2u 1
c
3
u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 15u
4
+ 8u
3
+ u
2
u 1
c
4
u
8
4u
7
+ 10u
6
16u
5
+ 15u
4
8u
3
+ u
2
+ u 1
c
5
, c
10
u
8
3u
6
u
5
+ 4u
4
+ 3u
3
3u
2
3u + 1
c
6
, c
8
u
8
3u
6
+ u
5
+ 4u
4
3u
3
3u
2
+ 3u + 1
c
7
u
8
u
6
+ 2u
5
+ 3u
4
+ 2u
3
u
2
+ 1
c
9
u
8
+ u
7
+ u
6
u
5
2u
4
+ u
3
3u
2
+ 2u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
8
2y
7
+ 7y
6
12y
5
+ 5y
4
12y
3
+ 7y
2
2y + 1
c
2
, c
9
y
8
+ y
7
y
6
13y
5
6y
4
+ 13y
3
+ 9y
2
+ 2y + 1
c
3
, c
4
y
8
+ 4y
7
+ 2y
6
18y
5
5y
4
22y
3
13y
2
3y + 1
c
5
, c
6
, c
8
c
10
y
8
6y
7
+ 17y
6
31y
5
+ 42y
4
45y
3
+ 35y
2
15y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.564069 + 0.825728I
a = 1.16899 1.40408I
b = 1.168990 0.247374I
6.39156I 0. + 8.17644I
u = 0.564069 0.825728I
a = 1.16899 + 1.40408I
b = 1.168990 + 0.247374I
6.39156I 0. 8.17644I
u = 0.747139
a = 1.89022
b = 0.283291
4.69721 8.73000
u = 1.33844
a = 0.308010
b = 1.29891
4.69721 8.73000
u = 0.468348 + 0.438200I
a = 0.445605 1.005710I
b = 0.737885 0.854835I
1.62267 + 2.99663I 2.80411 6.12718I
u = 0.468348 0.438200I
a = 0.445605 + 1.005710I
b = 0.737885 + 0.854835I
1.62267 2.99663I 2.80411 + 6.12718I
u = 1.13851 + 1.06522I
a = 0.067722 0.648589I
b = 1.115770 0.497712I
1.62267 + 2.99663I 2.80411 6.12718I
u = 1.13851 1.06522I
a = 0.067722 + 0.648589I
b = 1.115770 + 0.497712I
1.62267 2.99663I 2.80411 + 6.12718I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
u
6
2u
5
+ 3u
4
2u
3
u
2
+ 1)(u
56
+ 3u
55
+ ··· 86u 29)
c
2
(u
8
u
7
+ ··· 2u 1)(u
56
u
54
+ ··· 12u + 1)
c
3
(u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 15u
4
+ 8u
3
+ u
2
u 1)
· (u
56
+ 3u
55
+ ··· 23u + 1)
c
4
(u
8
4u
7
+ 10u
6
16u
5
+ 15u
4
8u
3
+ u
2
+ u 1)
· (u
56
3u
55
+ ··· + 23u + 1)
c
5
(u
8
3u
6
+ ··· 3u + 1)(u
56
+ u
55
+ ··· 21u 1)
c
6
(u
8
3u
6
+ ··· + 3u + 1)(u
56
u
55
+ ··· + 21u 1)
c
7
(u
8
u
6
+ 2u
5
+ 3u
4
+ 2u
3
u
2
+ 1)(u
56
3u
55
+ ··· + 86u 29)
c
8
(u
8
3u
6
+ ··· + 3u + 1)(u
56
+ u
55
+ ··· 21u 1)
c
9
(u
8
+ u
7
+ ··· + 2u 1)(u
56
u
54
+ ··· + 12u + 1)
c
10
(u
8
3u
6
+ ··· 3u + 1)(u
56
u
55
+ ··· + 21u 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
8
2y
7
+ 7y
6
12y
5
+ 5y
4
12y
3
+ 7y
2
2y + 1)
· (y
56
13y
55
+ ··· 26246y + 841)
c
2
, c
9
(y
8
+ y
7
y
6
13y
5
6y
4
+ 13y
3
+ 9y
2
+ 2y + 1)
· (y
56
2y
55
+ ··· 526y + 1)
c
3
, c
4
(y
8
+ 4y
7
+ 2y
6
18y
5
5y
4
22y
3
13y
2
3y + 1)
· (y
56
+ 5y
55
+ ··· 155y + 1)
c
5
, c
6
, c
8
c
10
(y
8
6y
7
+ 17y
6
31y
5
+ 42y
4
45y
3
+ 35y
2
15y + 1)
· (y
56
41y
55
+ ··· 91y + 1)
16