12a
1235
(K12a
1235
)
A knot diagram
1
Linearized knot diagam
5 6 9 10 11 3 12 1 4 2 7 8
Solving Sequence
7,12
8 1
3,9
4 6 2 11 5 10
c
7
c
12
c
8
c
3
c
6
c
2
c
11
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.86883 × 10
97
u
82
1.55584 × 10
98
u
81
+ ··· + 7.14764 × 10
98
b 1.16306 × 10
99
,
1.14478 × 10
98
u
82
2.39182 × 10
98
u
81
+ ··· + 7.14764 × 10
98
a 3.16119 × 10
99
, u
83
+ u
82
+ ··· + 9u 1i
I
u
2
= h−u
14
+ 10u
12
+ u
11
39u
10
8u
9
+ 75u
8
+ 23u
7
74u
6
29u
5
+ 35u
4
+ 17u
3
6u
2
+ b 5u + 1,
u
15
u
14
+ ··· + a 1, u
17
12u
15
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 100 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.87×10
97
u
82
1.56×10
98
u
81
+· · ·+7.15×10
98
b1.16×10
99
, 1.14×
10
98
u
82
2.39×10
98
u
81
+· · ·+7.15×10
98
a3.16×10
99
, u
83
+u
82
+· · ·+9u1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
0.160162u
82
+ 0.334631u
81
+ ··· 0.747532u + 4.42271
0.0401367u
82
+ 0.217672u
81
+ ··· + 0.925102u + 1.62720
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.213196u
82
+ 0.466612u
81
+ ··· + 0.0323716u + 5.97524
0.00962191u
82
+ 0.239696u
81
+ ··· + 0.902950u + 1.65279
a
6
=
0.428885u
82
+ 0.918419u
81
+ ··· + 1.55236u + 8.53499
0.0169089u
82
+ 0.434079u
81
+ ··· 0.349604u + 3.04904
a
2
=
0.826939u
82
1.72921u
81
+ ··· 4.55454u 10.5230
0.0411460u
82
0.623126u
81
+ ··· + 2.08602u 3.87008
a
11
=
u
u
a
5
=
0.428878u
82
+ 0.873387u
81
+ ··· + 1.79165u + 8.46262
0.0169013u
82
+ 0.389047u
81
+ ··· 0.110312u + 2.97668
a
10
=
0.958590u
82
0.625662u
81
+ ··· 3.45210u 8.51747
0.504620u
82
0.211045u
81
+ ··· 2.58924u 2.59056
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.80406u
82
+ 2.42592u
81
+ ··· + 2.92566u + 25.5968
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
83
+ 5u
82
+ ··· + 719u 479
c
2
, c
6
u
83
28u
81
+ ··· 22u 73
c
3
, c
4
, c
9
u
83
u
82
+ ··· 4u + 8
c
5
u
83
+ u
82
+ ··· + 34u 1
c
7
, c
8
, c
11
c
12
u
83
u
82
+ ··· + 9u + 1
c
10
u
83
2u
82
+ ··· + 736u + 1561
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
83
+ 9y
82
+ ··· + 384757y 229441
c
2
, c
6
y
83
56y
82
+ ··· + 97428y 5329
c
3
, c
4
, c
9
y
83
83y
82
+ ··· 304y 64
c
5
y
83
+ y
82
+ ··· + 750y 1
c
7
, c
8
, c
11
c
12
y
83
99y
82
+ ··· + 83y 1
c
10
y
83
34y
82
+ ··· + 95556644y 2436721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.768082 + 0.691197I
a = 0.252642 + 1.292600I
b = 1.33555 + 0.56553I
7.6353 12.3651I 0
u = 0.768082 0.691197I
a = 0.252642 1.292600I
b = 1.33555 0.56553I
7.6353 + 12.3651I 0
u = 0.866895 + 0.373017I
a = 0.922412 0.077651I
b = 0.597906 0.120958I
2.82259 0.53209I 0
u = 0.866895 0.373017I
a = 0.922412 + 0.077651I
b = 0.597906 + 0.120958I
2.82259 + 0.53209I 0
u = 0.235435 + 0.882232I
a = 0.296158 + 0.219377I
b = 1.254670 0.403627I
9.25233 + 7.20437I 0
u = 0.235435 0.882232I
a = 0.296158 0.219377I
b = 1.254670 + 0.403627I
9.25233 7.20437I 0
u = 0.731931 + 0.526717I
a = 0.55919 + 1.43057I
b = 1.251280 + 0.487251I
1.12377 + 8.38932I 0
u = 0.731931 0.526717I
a = 0.55919 1.43057I
b = 1.251280 0.487251I
1.12377 8.38932I 0
u = 0.502172 + 0.729866I
a = 0.808477 1.017140I
b = 0.836691 0.506283I
3.26194 + 4.42234I 0
u = 0.502172 0.729866I
a = 0.808477 + 1.017140I
b = 0.836691 + 0.506283I
3.26194 4.42234I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.741521 + 0.479666I
a = 0.61796 + 1.69432I
b = 1.180280 + 0.049298I
7.90154 + 3.78747I 0
u = 0.741521 0.479666I
a = 0.61796 1.69432I
b = 1.180280 0.049298I
7.90154 3.78747I 0
u = 0.759993 + 0.438039I
a = 0.51802 1.64118I
b = 1.39103 0.62751I
7.59156 2.88645I 0
u = 0.759993 0.438039I
a = 0.51802 + 1.64118I
b = 1.39103 + 0.62751I
7.59156 + 2.88645I 0
u = 1.065910 + 0.374554I
a = 0.230666 0.271570I
b = 0.886114 + 0.262946I
0.720339 + 0.792513I 0
u = 1.065910 0.374554I
a = 0.230666 + 0.271570I
b = 0.886114 0.262946I
0.720339 0.792513I 0
u = 0.835796 + 0.060616I
a = 0.741566 0.326162I
b = 0.139599 0.295553I
1.73821 0.12176I 0
u = 0.835796 0.060616I
a = 0.741566 + 0.326162I
b = 0.139599 + 0.295553I
1.73821 + 0.12176I 0
u = 0.605321 + 0.578215I
a = 0.022688 + 0.194967I
b = 0.662120 + 0.544490I
2.82569 + 0.10655I 0
u = 0.605321 0.578215I
a = 0.022688 0.194967I
b = 0.662120 0.544490I
2.82569 0.10655I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.774756 + 0.279655I
a = 0.409521 0.846501I
b = 0.075986 0.890444I
2.46982 + 3.44779I 0
u = 0.774756 0.279655I
a = 0.409521 + 0.846501I
b = 0.075986 + 0.890444I
2.46982 3.44779I 0
u = 0.598146 + 0.543807I
a = 0.747680 0.822006I
b = 0.797769 0.293360I
0.78891 1.85485I 0
u = 0.598146 0.543807I
a = 0.747680 + 0.822006I
b = 0.797769 + 0.293360I
0.78891 + 1.85485I 0
u = 0.666365 + 0.433298I
a = 0.252771 1.104390I
b = 0.032199 1.198920I
3.54914 6.33411I 0. + 8.16822I
u = 0.666365 0.433298I
a = 0.252771 + 1.104390I
b = 0.032199 + 1.198920I
3.54914 + 6.33411I 0. 8.16822I
u = 0.137211 + 0.664955I
a = 1.008040 + 0.313227I
b = 1.111180 0.371677I
2.87567 4.41134I 3.53322 + 5.88957I
u = 0.137211 0.664955I
a = 1.008040 0.313227I
b = 1.111180 + 0.371677I
2.87567 + 4.41134I 3.53322 5.88957I
u = 0.555148 + 0.350297I
a = 1.40971 + 1.37443I
b = 1.219220 + 0.311712I
1.52584 2.93851I 2.21348 + 8.51205I
u = 0.555148 0.350297I
a = 1.40971 1.37443I
b = 1.219220 0.311712I
1.52584 + 2.93851I 2.21348 8.51205I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.284960 + 0.532591I
a = 0.606372 0.317238I
b = 1.101640 + 0.237984I
4.61964 2.27072I 0
u = 1.284960 0.532591I
a = 0.606372 + 0.317238I
b = 1.101640 0.237984I
4.61964 + 2.27072I 0
u = 0.499318 + 0.304404I
a = 0.15040 2.11729I
b = 1.091140 0.571643I
1.74936 + 2.54506I 4.42588 10.86296I
u = 0.499318 0.304404I
a = 0.15040 + 2.11729I
b = 1.091140 + 0.571643I
1.74936 2.54506I 4.42588 + 10.86296I
u = 0.452167 + 0.325212I
a = 0.58482 + 2.60510I
b = 1.002000 0.101348I
1.85705 + 0.45025I 3.87420 + 1.56486I
u = 0.452167 0.325212I
a = 0.58482 2.60510I
b = 1.002000 + 0.101348I
1.85705 0.45025I 3.87420 1.56486I
u = 0.054260 + 0.528821I
a = 0.542993 0.539629I
b = 1.44268 + 0.17108I
9.81715 0.31683I 9.58825 0.96575I
u = 0.054260 0.528821I
a = 0.542993 + 0.539629I
b = 1.44268 0.17108I
9.81715 + 0.31683I 9.58825 + 0.96575I
u = 1.49008
a = 0.452163
b = 1.68796
4.72540 0
u = 1.49221 + 0.03214I
a = 0.02163 + 1.51967I
b = 0.808869 + 0.200589I
0.82324 4.29800I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49221 0.03214I
a = 0.02163 1.51967I
b = 0.808869 0.200589I
0.82324 + 4.29800I 0
u = 0.420439 + 0.274945I
a = 0.115243 0.576490I
b = 1.037550 + 0.209794I
1.89083 0.25563I 4.66041 1.63586I
u = 0.420439 0.274945I
a = 0.115243 + 0.576490I
b = 1.037550 0.209794I
1.89083 + 0.25563I 4.66041 + 1.63586I
u = 1.50758 + 0.03846I
a = 0.68100 1.96909I
b = 0.998445 0.934747I
1.10641 2.50144I 0
u = 1.50758 0.03846I
a = 0.68100 + 1.96909I
b = 0.998445 + 0.934747I
1.10641 + 2.50144I 0
u = 1.51416
a = 1.76375
b = 2.20627
4.11044 0
u = 1.54919 + 0.07124I
a = 0.47695 1.54171I
b = 0.924141 0.190121I
5.00465 + 0.83960I 0
u = 1.54919 0.07124I
a = 0.47695 + 1.54171I
b = 0.924141 + 0.190121I
5.00465 0.83960I 0
u = 1.56347 + 0.06819I
a = 0.78560 + 1.75556I
b = 1.14540 + 0.90049I
5.34195 3.77537I 0
u = 1.56347 0.06819I
a = 0.78560 1.75556I
b = 1.14540 0.90049I
5.34195 + 3.77537I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.57107 + 0.09416I
a = 0.166949 1.254180I
b = 1.38879 0.41637I
5.75176 + 4.51699I 0
u = 1.57107 0.09416I
a = 0.166949 + 1.254180I
b = 1.38879 + 0.41637I
5.75176 4.51699I 0
u = 1.55834 + 0.24296I
a = 0.02366 + 1.51038I
b = 0.963467 + 0.634147I
3.58166 8.00557I 0
u = 1.55834 0.24296I
a = 0.02366 1.51038I
b = 0.963467 0.634147I
3.58166 + 8.00557I 0
u = 1.57285 + 0.14448I
a = 0.592693 1.011330I
b = 0.679658 0.812394I
4.48210 2.61438I 0
u = 1.57285 0.14448I
a = 0.592693 + 1.011330I
b = 0.679658 + 0.812394I
4.48210 + 2.61438I 0
u = 0.085058 + 0.399319I
a = 0.716080 0.440615I
b = 0.043328 + 0.425943I
0.023615 1.107130I 0.24981 + 5.47165I
u = 0.085058 0.399319I
a = 0.716080 + 0.440615I
b = 0.043328 0.425943I
0.023615 + 1.107130I 0.24981 5.47165I
u = 1.58914 + 0.16134I
a = 0.135384 + 1.207830I
b = 1.053060 + 0.533761I
8.22990 + 4.45911I 0
u = 1.58914 0.16134I
a = 0.135384 1.207830I
b = 1.053060 0.533761I
8.22990 4.45911I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59660 + 0.07112I
a = 0.407344 + 0.653461I
b = 1.263460 + 0.332042I
5.48564 0.54881I 0
u = 1.59660 0.07112I
a = 0.407344 0.653461I
b = 1.263460 0.332042I
5.48564 + 0.54881I 0
u = 1.59450 + 0.12611I
a = 0.39069 + 1.82656I
b = 0.22128 + 1.47922I
4.13693 + 8.41109I 0
u = 1.59450 0.12611I
a = 0.39069 1.82656I
b = 0.22128 1.47922I
4.13693 8.41109I 0
u = 0.201705 + 0.326921I
a = 2.77973 + 1.57851I
b = 0.449464 + 0.725917I
4.91629 + 3.36888I 3.38585 1.71367I
u = 0.201705 0.326921I
a = 2.77973 1.57851I
b = 0.449464 0.725917I
4.91629 3.36888I 3.38585 + 1.71367I
u = 1.61261 + 0.15634I
a = 0.39427 1.52840I
b = 1.35704 0.60605I
6.81274 10.95820I 0
u = 1.61261 0.15634I
a = 0.39427 + 1.52840I
b = 1.35704 + 0.60605I
6.81274 + 10.95820I 0
u = 1.61775 + 0.14984I
a = 0.88961 1.28448I
b = 0.998630 0.221072I
0.12435 6.19456I 0
u = 1.61775 0.14984I
a = 0.88961 + 1.28448I
b = 0.998630 + 0.221072I
0.12435 + 6.19456I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62616 + 0.06822I
a = 0.30884 + 1.49012I
b = 0.105281 + 1.165260I
10.74930 4.72000I 0
u = 1.62616 0.06822I
a = 0.30884 1.49012I
b = 0.105281 1.165260I
10.74930 + 4.72000I 0
u = 1.62426 + 0.13524I
a = 0.97669 + 1.71202I
b = 1.25823 + 0.93663I
0.55167 + 5.09041I 0
u = 1.62426 0.13524I
a = 0.97669 1.71202I
b = 1.25823 0.93663I
0.55167 5.09041I 0
u = 1.62996 + 0.21685I
a = 0.53811 1.61542I
b = 1.38415 0.71622I
0.3993 + 15.8170I 0
u = 1.62996 0.21685I
a = 0.53811 + 1.61542I
b = 1.38415 + 0.71622I
0.3993 15.8170I 0
u = 0.132784 + 0.329558I
a = 2.33743 2.97261I
b = 0.332026 + 0.247657I
4.91640 + 3.48534I 6.06358 0.28376I
u = 0.132784 0.329558I
a = 2.33743 + 2.97261I
b = 0.332026 0.247657I
4.91640 3.48534I 6.06358 + 0.28376I
u = 1.64700 + 0.01472I
a = 0.044159 0.956622I
b = 0.183647 0.730460I
10.48590 0.17400I 0
u = 1.64700 0.01472I
a = 0.044159 + 0.956622I
b = 0.183647 + 0.730460I
10.48590 + 0.17400I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.71576
a = 0.0355812
b = 0.301602
10.8584 0
u = 1.83402
a = 0.726582
b = 0.854030
7.54790 0
u = 0.106735
a = 4.49766
b = 1.77073
10.1184 26.6560
13
II.
I
u
2
= h−u
14
+10u
12
+· · ·+b+1, u
15
u
14
+· · ·+a1, u
17
12u
15
+· · ·+2u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
15
+ u
14
+ ··· + 3u + 1
u
14
10u
12
+ ··· + 5u 1
a
9
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
2u
14
+ u
13
+ ··· + 4u 1
u
15
+ u
14
+ ··· + 4u 2
a
6
=
u
16
u
15
+ ··· + 2u + 2
u
15
u
14
+ ··· u + 4
a
2
=
u
16
u
15
+ ··· + 2u + 2
u
15
3u
14
+ ··· 5u + 4
a
11
=
u
u
a
5
=
u
16
u
15
+ ··· + u + 2
u
15
2u
14
+ ··· 2u + 4
a
10
=
u
16
+ 10u
14
+ ··· + u 1
2u
16
+ 22u
14
+ ··· + 5u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
16
+ 4u
15
+ 73u
14
38u
13
367u
12
+ 133u
11
+ 984u
10
199u
9
1511u
8
+ 83u
7
+ 1323u
6
+ 86u
5
622u
4
97u
3
+ 148u
2
+ 27u 26
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
3u
14
+ ··· 2u + 1
c
2
u
17
3u
16
+ ··· 3u + 1
c
3
, c
4
u
17
10u
15
+ ··· + 2u 1
c
5
u
17
+ 2u
14
+ ··· + u + 1
c
6
u
17
+ 3u
16
+ ··· 3u 1
c
7
, c
8
u
17
12u
15
+ ··· + 2u + 1
c
9
u
17
10u
15
+ ··· + 2u + 1
c
10
u
17
3u
16
+ ··· 3u + 1
c
11
, c
12
u
17
12u
15
+ ··· + 2u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
12y
15
+ ··· 6y 1
c
2
, c
6
y
17
17y
16
+ ··· + 17y 1
c
3
, c
4
, c
9
y
17
20y
16
+ ··· + 12y 1
c
5
y
17
6y
15
+ ··· + 3y 1
c
7
, c
8
, c
11
c
12
y
17
24y
16
+ ··· + 24y 1
c
10
y
17
11y
16
+ ··· + 9y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.003650 + 0.195846I
a = 0.414207 0.465164I
b = 0.873230 + 0.151297I
0.428333 + 0.312530I 2.43654 + 3.06657I
u = 1.003650 0.195846I
a = 0.414207 + 0.465164I
b = 0.873230 0.151297I
0.428333 0.312530I 2.43654 3.06657I
u = 1.061240 + 0.385002I
a = 0.662692 0.347814I
b = 0.641197 + 0.217090I
2.74449 1.32796I 0.90153 + 5.25483I
u = 1.061240 0.385002I
a = 0.662692 + 0.347814I
b = 0.641197 0.217090I
2.74449 + 1.32796I 0.90153 5.25483I
u = 1.20350
a = 1.13612
b = 1.50640
6.94121 5.07090
u = 0.418970 + 0.407394I
a = 0.74760 2.87715I
b = 0.698605 0.479518I
4.81038 + 4.20124I 4.41894 9.88963I
u = 0.418970 0.407394I
a = 0.74760 + 2.87715I
b = 0.698605 + 0.479518I
4.81038 4.20124I 4.41894 + 9.88963I
u = 1.52501
a = 1.23243
b = 2.01362
3.55547 6.47810
u = 0.421778 + 0.203629I
a = 1.04051 2.49094I
b = 1.068590 0.399623I
1.43687 1.83764I 0.929561 + 0.761877I
u = 0.421778 0.203629I
a = 1.04051 + 2.49094I
b = 1.068590 + 0.399623I
1.43687 + 1.83764I 0.929561 0.761877I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.56066 + 0.06072I
a = 0.55652 + 1.55091I
b = 1.220760 + 0.593258I
5.52285 + 2.78715I 0.957635 0.257577I
u = 1.56066 0.06072I
a = 0.55652 1.55091I
b = 1.220760 0.593258I
5.52285 2.78715I 0.957635 + 0.257577I
u = 1.57362 + 0.12841I
a = 0.57428 + 1.80929I
b = 0.719013 + 0.744031I
2.18394 6.16611I 0.54092 + 5.12639I
u = 1.57362 0.12841I
a = 0.57428 1.80929I
b = 0.719013 0.744031I
2.18394 + 6.16611I 0.54092 5.12639I
u = 0.290981
a = 0.180347
b = 1.79429
9.95562 22.8560
u = 1.72992
a = 0.608202
b = 0.582363
10.5244 10.2120
u = 1.78304
a = 0.0475599
b = 0.475597
8.35124 5.60590
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
3u
14
+ ··· 2u + 1)(u
83
+ 5u
82
+ ··· + 719u 479)
c
2
(u
17
3u
16
+ ··· 3u + 1)(u
83
28u
81
+ ··· 22u 73)
c
3
, c
4
(u
17
10u
15
+ ··· + 2u 1)(u
83
u
82
+ ··· 4u + 8)
c
5
(u
17
+ 2u
14
+ ··· + u + 1)(u
83
+ u
82
+ ··· + 34u 1)
c
6
(u
17
+ 3u
16
+ ··· 3u 1)(u
83
28u
81
+ ··· 22u 73)
c
7
, c
8
(u
17
12u
15
+ ··· + 2u + 1)(u
83
u
82
+ ··· + 9u + 1)
c
9
(u
17
10u
15
+ ··· + 2u + 1)(u
83
u
82
+ ··· 4u + 8)
c
10
(u
17
3u
16
+ ··· 3u + 1)(u
83
2u
82
+ ··· + 736u + 1561)
c
11
, c
12
(u
17
12u
15
+ ··· + 2u 1)(u
83
u
82
+ ··· + 9u + 1)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
12y
15
+ ··· 6y 1)(y
83
+ 9y
82
+ ··· + 384757y 229441)
c
2
, c
6
(y
17
17y
16
+ ··· + 17y 1)(y
83
56y
82
+ ··· + 97428y 5329)
c
3
, c
4
, c
9
(y
17
20y
16
+ ··· + 12y 1)(y
83
83y
82
+ ··· 304y 64)
c
5
(y
17
6y
15
+ ··· + 3y 1)(y
83
+ y
82
+ ··· + 750y 1)
c
7
, c
8
, c
11
c
12
(y
17
24y
16
+ ··· + 24y 1)(y
83
99y
82
+ ··· + 83y 1)
c
10
(y
17
11y
16
+ ··· + 9y 1)
· (y
83
34y
82
+ ··· + 95556644y 2436721)
20