10
119
(K10a
85
)
A knot diagram
1
Linearized knot diagam
9 6 1 2 8 10 3 5 4 7
Solving Sequence
5,8 2,6
3 9 1 4 10 7
c
5
c
2
c
8
c
1
c
4
c
9
c
7
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3.28777 × 10
89
u
59
1.22268 × 10
90
u
58
+ ··· + 1.16518 × 10
90
b 4.76698 × 10
90
,
4.99619 × 10
90
u
59
1.95056 × 10
91
u
58
+ ··· + 1.16518 × 10
90
a 4.95274 × 10
91
, u
60
4u
59
+ ··· 23u + 1i
I
u
2
= h−u
9
4u
7
2u
6
7u
5
5u
4
7u
3
5u
2
+ b 4u 2, u
7
u
6
+ 3u
5
2u
4
+ 2u
3
3u
2
+ a u 2,
u
10
+ u
9
+ 5u
8
+ 6u
7
+ 12u
6
+ 13u
5
+ 15u
4
+ 12u
3
+ 9u
2
+ 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.29×10
89
u
59
1.22×10
90
u
58
+· · ·+1.17×10
90
b4.77×10
90
, 5.00×10
90
u
59
1.95 × 10
91
u
58
+ · · · + 1.17 × 10
90
a 4.95 × 10
91
, u
60
4u
59
+ · · · 23u + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
2
=
4.28792u
59
+ 16.7404u
58
+ ··· 632.741u + 42.5063
0.282169u
59
+ 1.04935u
58
+ ··· 68.4354u + 4.09120
a
6
=
1
u
2
a
3
=
4.49942u
59
+ 17.6872u
58
+ ··· 706.347u + 47.0087
0.0395616u
59
0.121304u
58
+ ··· 70.9634u + 4.19192
a
9
=
u
u
a
1
=
3.94168u
59
+ 15.4635u
58
+ ··· 636.369u + 42.8382
0.0640690u
59
0.227607u
58
+ ··· 72.0633u + 4.42310
a
4
=
1.42367u
59
+ 5.54425u
58
+ ··· 88.6243u 5.93639
0.806409u
59
2.71615u
58
+ ··· + 23.9853u 2.83163
a
10
=
3.87666u
59
+ 15.1780u
58
+ ··· 470.845u + 20.7208
0.0321931u
59
+ 0.119215u
58
+ ··· 17.1665u 0.190875
a
7
=
5.78866u
59
22.0859u
58
+ ··· + 760.341u 39.0347
0.216555u
59
0.514676u
58
+ ··· + 42.0890u 1.34596
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.42721u
59
4.42637u
58
+ ··· + 298.469u 20.6166
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
60
+ 6u
59
+ ··· + 543u + 79
c
2
u
60
+ u
59
+ ··· + 314u + 71
c
3
u
60
+ 4u
59
+ ··· 90u + 31
c
4
u
60
+ 4u
58
+ ··· + 28u + 3
c
5
, c
8
u
60
+ 4u
59
+ ··· + 23u + 1
c
6
, c
10
u
60
+ 2u
59
+ ··· + 21u + 13
c
7
u
60
+ u
59
+ ··· + 1880u + 667
c
9
u
60
+ u
59
+ ··· 22u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
60
+ 14y
59
+ ··· + 122113y + 6241
c
2
y
60
+ 13y
59
+ ··· + 80466y + 5041
c
3
y
60
16y
59
+ ··· 65698y + 961
c
4
y
60
+ 8y
59
+ ··· + 152y + 9
c
5
, c
8
y
60
+ 46y
59
+ ··· 77y + 1
c
6
, c
10
y
60
36y
59
+ ··· 2183y + 169
c
7
y
60
+ 21y
59
+ ··· + 11382388y + 444889
c
9
y
60
+ 5y
59
+ ··· 22y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.623835 + 0.811166I
a = 0.859875 + 0.355902I
b = 0.636544 + 0.230444I
0.77022 2.47923I 0. 8.23551I
u = 0.623835 0.811166I
a = 0.859875 0.355902I
b = 0.636544 0.230444I
0.77022 + 2.47923I 0. + 8.23551I
u = 0.390191 + 0.895254I
a = 0.454903 + 1.198220I
b = 0.222891 + 0.173390I
0.48057 1.96275I 6.28895 + 2.92214I
u = 0.390191 0.895254I
a = 0.454903 1.198220I
b = 0.222891 0.173390I
0.48057 + 1.96275I 6.28895 2.92214I
u = 0.057890 + 0.957459I
a = 0.90207 1.34370I
b = 0.307590 0.697419I
1.69174 2.07365I 0.35018 + 3.75765I
u = 0.057890 0.957459I
a = 0.90207 + 1.34370I
b = 0.307590 + 0.697419I
1.69174 + 2.07365I 0.35018 3.75765I
u = 0.055199 + 1.062610I
a = 0.240418 + 0.784604I
b = 1.238390 + 0.475118I
1.53778 + 2.56920I 0
u = 0.055199 1.062610I
a = 0.240418 0.784604I
b = 1.238390 0.475118I
1.53778 2.56920I 0
u = 1.098360 + 0.127961I
a = 0.283818 0.122637I
b = 0.223247 0.733150I
4.15031 0.75171I 0
u = 1.098360 0.127961I
a = 0.283818 + 0.122637I
b = 0.223247 + 0.733150I
4.15031 + 0.75171I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.252033 + 1.079010I
a = 0.09965 + 1.68364I
b = 1.16552 + 1.29014I
1.42019 + 3.81670I 0
u = 0.252033 1.079010I
a = 0.09965 1.68364I
b = 1.16552 1.29014I
1.42019 3.81670I 0
u = 0.790615 + 0.388915I
a = 0.890087 0.241883I
b = 0.796474 + 0.786684I
0.44456 + 2.32036I 1.97518 4.64341I
u = 0.790615 0.388915I
a = 0.890087 + 0.241883I
b = 0.796474 0.786684I
0.44456 2.32036I 1.97518 + 4.64341I
u = 0.303509 + 1.104720I
a = 0.22498 2.03796I
b = 0.308920 0.321579I
4.17954 + 7.17743I 0
u = 0.303509 1.104720I
a = 0.22498 + 2.03796I
b = 0.308920 + 0.321579I
4.17954 7.17743I 0
u = 1.140370 + 0.172582I
a = 0.0216976 0.0536118I
b = 0.860595 0.757350I
1.92721 + 10.19580I 0
u = 1.140370 0.172582I
a = 0.0216976 + 0.0536118I
b = 0.860595 + 0.757350I
1.92721 10.19580I 0
u = 0.423700 + 1.097000I
a = 0.01484 1.74876I
b = 0.98126 1.54901I
2.67312 6.89147I 0
u = 0.423700 1.097000I
a = 0.01484 + 1.74876I
b = 0.98126 + 1.54901I
2.67312 + 6.89147I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.173550 + 0.196304I
a = 0.1089490 + 0.0035265I
b = 0.723525 + 0.554514I
1.66896 4.09599I 0
u = 1.173550 0.196304I
a = 0.1089490 0.0035265I
b = 0.723525 0.554514I
1.66896 + 4.09599I 0
u = 0.105236 + 1.199410I
a = 0.79780 + 1.85890I
b = 1.31875 + 1.79980I
6.90749 + 6.01393I 0
u = 0.105236 1.199410I
a = 0.79780 1.85890I
b = 1.31875 1.79980I
6.90749 6.01393I 0
u = 0.057124 + 1.206740I
a = 0.225137 1.384350I
b = 0.83604 1.24262I
3.96912 1.82451I 0
u = 0.057124 1.206740I
a = 0.225137 + 1.384350I
b = 0.83604 + 1.24262I
3.96912 + 1.82451I 0
u = 0.057398 + 1.224090I
a = 0.66515 1.99713I
b = 0.539561 0.979683I
7.31597 5.19158I 0
u = 0.057398 1.224090I
a = 0.66515 + 1.99713I
b = 0.539561 + 0.979683I
7.31597 + 5.19158I 0
u = 0.539940 + 0.503116I
a = 1.024080 + 0.843151I
b = 0.880526 0.425648I
0.285692 0.756946I 1.15945 1.79896I
u = 0.539940 0.503116I
a = 1.024080 0.843151I
b = 0.880526 + 0.425648I
0.285692 + 0.756946I 1.15945 + 1.79896I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.696757 + 0.013245I
a = 0.218959 0.031077I
b = 0.950374 + 0.230216I
1.77833 + 0.12398I 7.12326 + 1.43443I
u = 0.696757 0.013245I
a = 0.218959 + 0.031077I
b = 0.950374 0.230216I
1.77833 0.12398I 7.12326 1.43443I
u = 0.262291 + 1.287330I
a = 0.29769 + 2.09008I
b = 0.97062 + 1.39698I
3.13949 + 6.16052I 0
u = 0.262291 1.287330I
a = 0.29769 2.09008I
b = 0.97062 1.39698I
3.13949 6.16052I 0
u = 0.097078 + 1.316500I
a = 0.859018 + 0.495607I
b = 1.55967 + 0.51228I
6.87032 1.61985I 0
u = 0.097078 1.316500I
a = 0.859018 0.495607I
b = 1.55967 0.51228I
6.87032 + 1.61985I 0
u = 0.313462 + 1.288310I
a = 0.49264 1.63832I
b = 1.01214 1.22490I
2.23892 3.83057I 0
u = 0.313462 1.288310I
a = 0.49264 + 1.63832I
b = 1.01214 + 1.22490I
2.23892 + 3.83057I 0
u = 0.588701 + 0.273361I
a = 1.06281 + 0.93632I
b = 0.866958 + 0.207225I
1.77283 3.70444I 2.15456 + 4.83060I
u = 0.588701 0.273361I
a = 1.06281 0.93632I
b = 0.866958 0.207225I
1.77283 + 3.70444I 2.15456 4.83060I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.073825 + 1.367230I
a = 0.802201 + 0.446279I
b = 0.161175 + 0.349105I
6.64861 0.13946I 0
u = 0.073825 1.367230I
a = 0.802201 0.446279I
b = 0.161175 0.349105I
6.64861 + 0.13946I 0
u = 0.540634 + 0.052002I
a = 0.358037 + 0.018404I
b = 0.990107 + 0.775650I
1.01358 + 3.09322I 5.20661 7.95930I
u = 0.540634 0.052002I
a = 0.358037 0.018404I
b = 0.990107 0.775650I
1.01358 3.09322I 5.20661 + 7.95930I
u = 0.48204 + 1.37578I
a = 0.289297 1.243460I
b = 0.783244 0.988185I
8.85403 + 4.69065I 0
u = 0.48204 1.37578I
a = 0.289297 + 1.243460I
b = 0.783244 + 0.988185I
8.85403 4.69065I 0
u = 0.56774 + 1.38515I
a = 0.309520 + 1.074330I
b = 0.299852 + 1.192800I
8.17971 + 6.88009I 0
u = 0.56774 1.38515I
a = 0.309520 1.074330I
b = 0.299852 1.192800I
8.17971 6.88009I 0
u = 0.50546 + 1.41839I
a = 0.069865 + 1.320870I
b = 1.10129 + 1.06163I
3.32542 9.91193I 0
u = 0.50546 1.41839I
a = 0.069865 1.320870I
b = 1.10129 1.06163I
3.32542 + 9.91193I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.49893 + 1.42456I
a = 0.12004 1.52962I
b = 1.14876 1.24339I
6.9242 + 15.9387I 0
u = 0.49893 1.42456I
a = 0.12004 + 1.52962I
b = 1.14876 + 1.24339I
6.9242 15.9387I 0
u = 0.39076 + 1.51085I
a = 0.232798 0.759750I
b = 0.621503 0.751780I
3.26872 3.24397I 0
u = 0.39076 1.51085I
a = 0.232798 + 0.759750I
b = 0.621503 + 0.751780I
3.26872 + 3.24397I 0
u = 0.105930 + 0.285642I
a = 1.73848 + 2.14934I
b = 0.223189 0.473560I
0.08914 1.52136I 0.92288 + 3.10853I
u = 0.105930 0.285642I
a = 1.73848 2.14934I
b = 0.223189 + 0.473560I
0.08914 + 1.52136I 0.92288 3.10853I
u = 0.81740 + 1.64815I
a = 0.236080 + 0.190955I
b = 0.000901 + 0.445406I
5.53864 3.01539I 0
u = 0.81740 1.64815I
a = 0.236080 0.190955I
b = 0.000901 0.445406I
5.53864 + 3.01539I 0
u = 0.0991795 + 0.0504499I
a = 2.85459 9.86759I
b = 0.224592 1.103140I
3.57991 4.96662I 0.78194 + 5.62106I
u = 0.0991795 0.0504499I
a = 2.85459 + 9.86759I
b = 0.224592 + 1.103140I
3.57991 + 4.96662I 0.78194 5.62106I
10
II. I
u
2
= h−u
9
4u
7
+ · · · + b 2, u
7
u
6
+ 3u
5
2u
4
+ 2u
3
3u
2
+ a u
2, u
10
+ u
9
+ · · · + 4u + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
2
=
u
7
+ u
6
3u
5
+ 2u
4
2u
3
+ 3u
2
+ u + 2
u
9
+ 4u
7
+ 2u
6
+ 7u
5
+ 5u
4
+ 7u
3
+ 5u
2
+ 4u + 2
a
6
=
1
u
2
a
3
=
u
8
+ 5u
6
+ 2u
5
+ 10u
4
+ 6u
3
+ 10u
2
+ 5u + 4
u
9
+ u
8
+ 5u
7
+ 6u
6
+ 12u
5
+ 13u
4
+ 15u
3
+ 12u
2
+ 8u + 3
a
9
=
u
u
a
1
=
u
9
5u
7
u
6
10u
5
3u
4
8u
3
2u
2
2u + 1
u
3
+ u + 1
a
4
=
u
9
+ 2u
8
+ 5u
7
+ 11u
6
+ 14u
5
+ 22u
4
+ 20u
3
+ 20u
2
+ 11u + 6
2u
9
+ u
8
+ 9u
7
+ 8u
6
+ 19u
5
+ 17u
4
+ 21u
3
+ 15u
2
+ 10u + 3
a
10
=
3u
9
u
8
15u
7
9u
6
32u
5
22u
4
33u
3
19u
2
15u 2
u
9
+ u
8
+ 4u
7
+ 6u
6
+ 8u
5
+ 11u
4
+ 9u
3
+ 8u
2
+ 5u + 3
a
7
=
3u
9
u
8
13u
7
8u
6
25u
5
16u
4
23u
3
11u
2
10u 1
u
8
+ u
7
+ 5u
6
+ 5u
5
+ 11u
4
+ 9u
3
+ 10u
2
+ 6u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
9
+ 3u
8
39u
7
3u
6
57u
5
14u
4
31u
3
8u
2
7u + 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
u
9
+ u
8
+ 3u
7
+ 4u
4
+ 2u
2
+ 1
c
2
u
10
+ 2u
8
+ 4u
7
+ 2u
6
+ 3u
5
+ 6u
4
+ 4u
3
+ u
2
+ u + 1
c
3
u
10
+ 5u
9
+ ··· + 5u + 1
c
4
u
10
5u
9
+ 14u
8
24u
7
+ 29u
6
24u
5
+ 11u
4
+ u
3
2u
2
u + 1
c
5
u
10
+ u
9
+ 5u
8
+ 6u
7
+ 12u
6
+ 13u
5
+ 15u
4
+ 12u
3
+ 9u
2
+ 4u + 1
c
6
u
10
u
9
2u
8
+ 4u
7
5u
5
+ 5u
4
+ 2u
3
4u
2
+ 1
c
7
u
10
+ 3u
7
+ 2u
6
+ 2u
5
+ 2u
4
+ 3u
3
+ 4u
2
+ u + 1
c
8
u
10
u
9
+ 5u
8
6u
7
+ 12u
6
13u
5
+ 15u
4
12u
3
+ 9u
2
4u + 1
c
9
u
10
+ 2u
8
+ 4u
6
+ 3u
3
+ u
2
u + 1
c
10
u
10
+ u
9
2u
8
4u
7
+ 5u
5
+ 5u
4
2u
3
4u
2
+ 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ y
9
+ 7y
8
y
7
+ 12y
6
+ 6y
5
+ 18y
4
+ 16y
3
+ 12y
2
+ 4y + 1
c
2
y
10
+ 4y
9
+ 8y
8
+ 4y
7
+ 6y
6
11y
5
+ 12y
4
6y
3
+ 5y
2
+ y + 1
c
3
y
10
+ 3y
9
+ 2y
8
8y
7
35y
6
+ 138y
4
+ 105y
3
+ 27y
2
+ 5y + 1
c
4
y
10
+ 3y
9
+ 14y
8
+ 18y
7
+ 3y
6
+ 46y
5
+ 33y
4
35y
3
+ 28y
2
5y + 1
c
5
, c
8
y
10
+ 9y
9
+ ··· + 2y + 1
c
6
, c
10
y
10
5y
9
+ ··· 8y + 1
c
7
y
10
+ 4y
8
5y
7
12y
5
+ 2y
4
+ 7y
3
+ 14y
2
+ 7y + 1
c
9
y
10
+ 4y
9
+ 12y
8
+ 16y
7
+ 18y
6
+ 6y
5
+ 12y
4
y
3
+ 7y
2
+ y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.569171 + 0.652818I
a = 1.156860 0.167161I
b = 0.666955 0.329661I
0.80863 2.83685I 3.98230 + 13.24479I
u = 0.569171 0.652818I
a = 1.156860 + 0.167161I
b = 0.666955 + 0.329661I
0.80863 + 2.83685I 3.98230 13.24479I
u = 0.257088 + 1.121830I
a = 0.53465 + 2.12743I
b = 0.069226 + 1.285130I
5.27004 + 6.36836I 3.95341 6.63467I
u = 0.257088 1.121830I
a = 0.53465 2.12743I
b = 0.069226 1.285130I
5.27004 6.36836I 3.95341 + 6.63467I
u = 0.265511 + 1.239090I
a = 0.42180 1.89279I
b = 1.14707 1.48128I
2.50173 4.70796I 2.30544 + 6.58589I
u = 0.265511 1.239090I
a = 0.42180 + 1.89279I
b = 1.14707 + 1.48128I
2.50173 + 4.70796I 2.30544 6.58589I
u = 0.409125 + 0.329081I
a = 1.37279 0.74482I
b = 1.006320 + 0.639149I
0.60938 + 1.82644I 5.24506 2.77183I
u = 0.409125 0.329081I
a = 1.37279 + 0.74482I
b = 1.006320 0.639149I
0.60938 1.82644I 5.24506 + 2.77183I
u = 0.48672 + 1.42706I
a = 0.1030920 + 0.0771624I
b = 0.389573 0.258635I
5.16077 2.93340I 2.03148 + 3.30765I
u = 0.48672 1.42706I
a = 0.1030920 0.0771624I
b = 0.389573 + 0.258635I
5.16077 + 2.93340I 2.03148 3.30765I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
u
9
+ u
8
+ 3u
7
+ 4u
4
+ 2u
2
+ 1)(u
60
+ 6u
59
+ ··· + 543u + 79)
c
2
(u
10
+ 2u
8
+ 4u
7
+ 2u
6
+ 3u
5
+ 6u
4
+ 4u
3
+ u
2
+ u + 1)
· (u
60
+ u
59
+ ··· + 314u + 71)
c
3
(u
10
+ 5u
9
+ ··· + 5u + 1)(u
60
+ 4u
59
+ ··· 90u + 31)
c
4
(u
10
5u
9
+ 14u
8
24u
7
+ 29u
6
24u
5
+ 11u
4
+ u
3
2u
2
u + 1)
· (u
60
+ 4u
58
+ ··· + 28u + 3)
c
5
(u
10
+ u
9
+ 5u
8
+ 6u
7
+ 12u
6
+ 13u
5
+ 15u
4
+ 12u
3
+ 9u
2
+ 4u + 1)
· (u
60
+ 4u
59
+ ··· + 23u + 1)
c
6
(u
10
u
9
2u
8
+ 4u
7
5u
5
+ 5u
4
+ 2u
3
4u
2
+ 1)
· (u
60
+ 2u
59
+ ··· + 21u + 13)
c
7
(u
10
+ 3u
7
+ 2u
6
+ 2u
5
+ 2u
4
+ 3u
3
+ 4u
2
+ u + 1)
· (u
60
+ u
59
+ ··· + 1880u + 667)
c
8
(u
10
u
9
+ 5u
8
6u
7
+ 12u
6
13u
5
+ 15u
4
12u
3
+ 9u
2
4u + 1)
· (u
60
+ 4u
59
+ ··· + 23u + 1)
c
9
(u
10
+ 2u
8
+ 4u
6
+ 3u
3
+ u
2
u + 1)(u
60
+ u
59
+ ··· 22u + 1)
c
10
(u
10
+ u
9
2u
8
4u
7
+ 5u
5
+ 5u
4
2u
3
4u
2
+ 1)
· (u
60
+ 2u
59
+ ··· + 21u + 13)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ y
9
+ 7y
8
y
7
+ 12y
6
+ 6y
5
+ 18y
4
+ 16y
3
+ 12y
2
+ 4y + 1)
· (y
60
+ 14y
59
+ ··· + 122113y + 6241)
c
2
(y
10
+ 4y
9
+ 8y
8
+ 4y
7
+ 6y
6
11y
5
+ 12y
4
6y
3
+ 5y
2
+ y + 1)
· (y
60
+ 13y
59
+ ··· + 80466y + 5041)
c
3
(y
10
+ 3y
9
+ 2y
8
8y
7
35y
6
+ 138y
4
+ 105y
3
+ 27y
2
+ 5y + 1)
· (y
60
16y
59
+ ··· 65698y + 961)
c
4
(y
10
+ 3y
9
+ 14y
8
+ 18y
7
+ 3y
6
+ 46y
5
+ 33y
4
35y
3
+ 28y
2
5y + 1)
· (y
60
+ 8y
59
+ ··· + 152y + 9)
c
5
, c
8
(y
10
+ 9y
9
+ ··· + 2y + 1)(y
60
+ 46y
59
+ ··· 77y + 1)
c
6
, c
10
(y
10
5y
9
+ ··· 8y + 1)(y
60
36y
59
+ ··· 2183y + 169)
c
7
(y
10
+ 4y
8
5y
7
12y
5
+ 2y
4
+ 7y
3
+ 14y
2
+ 7y + 1)
· (y
60
+ 21y
59
+ ··· + 11382388y + 444889)
c
9
(y
10
+ 4y
9
+ 12y
8
+ 16y
7
+ 18y
6
+ 6y
5
+ 12y
4
y
3
+ 7y
2
+ y + 1)
· (y
60
+ 5y
59
+ ··· 22y + 1)
16