12a
1240
(K12a
1240
)
A knot diagram
1
Linearized knot diagam
5 6 9 1 10 11 12 4 3 2 7 8
Solving Sequence
4,8 9,12
1 5 2 3 10 7 11 6
c
8
c
12
c
4
c
1
c
3
c
9
c
7
c
11
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.60256 × 10
102
u
64
+ 5.40064 × 10
102
u
63
+ ··· + 8.11475 × 10
103
b + 1.59562 × 10
105
,
7.53145 × 10
104
u
64
+ 2.70697 × 10
104
u
63
+ ··· + 1.40385 × 10
106
a + 3.91291 × 10
107
,
u
65
+ u
64
+ ··· + 354u + 173i
I
u
2
= hu
15
+ 8u
13
+ u
12
+ 23u
11
+ 6u
10
+ 26u
9
+ 12u
8
+ 4u
7
+ 8u
6
9u
5
u
4
2u
3
2u
2
+ b u 1,
u
16
+ u
15
+ ··· + a + 1,
u
17
+ 10u
15
+ 40u
13
u
12
+ 80u
11
7u
10
+ 80u
9
18u
8
+ 31u
7
21u
6
4u
5
11u
4
5u
3
3u
2
2u 1i
* 2 irreducible components of dim
C
= 0, with total 82 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4.60 × 10
102
u
64
+ 5.40 × 10
102
u
63
+ · · · + 8.11 × 10
103
b + 1.60 ×
10
105
, 7.53 × 10
104
u
64
+ 2.71 × 10
104
u
63
+ · · · + 1.40 × 10
106
a + 3.91 ×
10
107
, u
65
+ u
64
+ · · · + 354u + 173i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
0.0536485u
64
0.0192824u
63
+ ··· + 13.4066u 27.8726
0.0567184u
64
0.0665534u
63
+ ··· 38.2451u 19.6632
a
1
=
0.110367u
64
+ 0.0472710u
63
+ ··· + 51.6516u 8.20942
0.0567184u
64
0.0665534u
63
+ ··· 38.2451u 19.6632
a
5
=
0.0429065u
64
0.00292175u
63
+ ··· + 21.3658u 11.3738
0.0125258u
64
0.0125001u
63
+ ··· 10.2360u 7.41086
a
2
=
0.0400474u
64
0.000625365u
63
+ ··· 4.46978u + 16.5675
0.00594570u
64
+ 0.0205051u
63
+ ··· + 15.4488u + 6.51593
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
7
=
0.0399289u
64
+ 0.0211829u
63
+ ··· + 33.3413u + 0.333312
0.00290844u
64
0.00912864u
63
+ ··· 5.74412u 4.59512
a
11
=
0.0230777u
64
0.0466096u
63
+ ··· 13.8268u 24.0009
0.0279384u
64
0.0319295u
63
+ ··· 19.5314u 12.5317
a
6
=
0.0320474u
64
+ 0.00430410u
63
+ ··· + 17.5224u 7.47526
0.0150469u
64
+ 0.0130919u
63
+ ··· + 1.71790u 0.984422
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.103545u
64
0.0564918u
63
+ ··· + 57.0917u 87.3956
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
65
34u
63
+ ··· + 25u 1
c
2
u
65
5u
64
+ ··· 1840u 529
c
3
, c
8
, c
9
u
65
+ u
64
+ ··· + 354u + 173
c
5
u
65
+ 2u
64
+ ··· + 784u + 131
c
6
, c
7
, c
11
c
12
u
65
u
64
+ ··· + 16u + 1
c
10
u
65
+ 5u
64
+ ··· + 1163u 215
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
65
68y
64
+ ··· 201y 1
c
2
y
65
+ 27y
64
+ ··· 5322798y 279841
c
3
, c
8
, c
9
y
65
+ 77y
64
+ ··· 683978y 29929
c
5
y
65
+ 20y
64
+ ··· 271428y 17161
c
6
, c
7
, c
11
c
12
y
65
87y
64
+ ··· 500y 1
c
10
y
65
25y
64
+ ··· + 3288859y 46225
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726071 + 0.758126I
a = 0.324975 0.706814I
b = 0.979305 + 0.369172I
5.63744 + 7.47497I 0
u = 0.726071 0.758126I
a = 0.324975 + 0.706814I
b = 0.979305 0.369172I
5.63744 7.47497I 0
u = 0.975827 + 0.494607I
a = 0.107308 + 0.453272I
b = 0.934240 + 0.048674I
4.60698 1.82196I 0
u = 0.975827 0.494607I
a = 0.107308 0.453272I
b = 0.934240 0.048674I
4.60698 + 1.82196I 0
u = 0.543682 + 0.626807I
a = 0.567121 1.246980I
b = 1.72542 + 0.11080I
14.1457 + 2.3448I 11.61428 2.93633I
u = 0.543682 0.626807I
a = 0.567121 + 1.246980I
b = 1.72542 0.11080I
14.1457 2.3448I 11.61428 + 2.93633I
u = 0.117879 + 1.166460I
a = 1.79246 + 0.68241I
b = 1.387970 + 0.003546I
6.36326 2.20018I 0
u = 0.117879 1.166460I
a = 1.79246 0.68241I
b = 1.387970 0.003546I
6.36326 + 2.20018I 0
u = 0.088335 + 0.787639I
a = 0.631221 + 0.409079I
b = 0.365744 0.340357I
0.71879 + 1.22446I 2.81178 5.97989I
u = 0.088335 0.787639I
a = 0.631221 0.409079I
b = 0.365744 + 0.340357I
0.71879 1.22446I 2.81178 + 5.97989I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.447830 + 0.608444I
a = 1.60044 0.14443I
b = 1.59034 0.09596I
8.81586 2.32152I 8.51550 4.26961I
u = 0.447830 0.608444I
a = 1.60044 + 0.14443I
b = 1.59034 + 0.09596I
8.81586 + 2.32152I 8.51550 + 4.26961I
u = 0.525484 + 0.504088I
a = 0.43025 + 2.02495I
b = 1.69411 + 0.00431I
13.75730 + 1.38625I 12.86514 4.98182I
u = 0.525484 0.504088I
a = 0.43025 2.02495I
b = 1.69411 0.00431I
13.75730 1.38625I 12.86514 + 4.98182I
u = 0.334819 + 0.628588I
a = 0.278152 0.888652I
b = 0.103555 + 0.660906I
2.26471 4.03136I 5.94020 + 7.20403I
u = 0.334819 0.628588I
a = 0.278152 + 0.888652I
b = 0.103555 0.660906I
2.26471 + 4.03136I 5.94020 7.20403I
u = 0.983839 + 0.840083I
a = 0.958856 0.844751I
b = 1.71710 + 0.09388I
15.1766 9.3107I 0
u = 0.983839 0.840083I
a = 0.958856 + 0.844751I
b = 1.71710 0.09388I
15.1766 + 9.3107I 0
u = 0.317310 + 0.626994I
a = 2.68952 + 0.91215I
b = 1.61060 0.07096I
9.00930 + 4.95002I 7.74249 6.87275I
u = 0.317310 0.626994I
a = 2.68952 0.91215I
b = 1.61060 + 0.07096I
9.00930 4.95002I 7.74249 + 6.87275I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.177809 + 1.350850I
a = 0.357829 + 0.197902I
b = 0.017560 + 0.381554I
4.20596 + 3.45721I 0
u = 0.177809 1.350850I
a = 0.357829 0.197902I
b = 0.017560 0.381554I
4.20596 3.45721I 0
u = 0.401140 + 0.489673I
a = 1.45507 + 0.87862I
b = 0.0202678 + 0.0500323I
1.70244 + 1.41602I 3.83791 + 4.34485I
u = 0.401140 0.489673I
a = 1.45507 0.87862I
b = 0.0202678 0.0500323I
1.70244 1.41602I 3.83791 4.34485I
u = 1.261060 + 0.536996I
a = 0.741092 + 0.442516I
b = 1.70945 + 0.01249I
14.0841 + 2.0654I 0
u = 1.261060 0.536996I
a = 0.741092 0.442516I
b = 1.70945 0.01249I
14.0841 2.0654I 0
u = 0.134645 + 0.584405I
a = 0.197801 1.366820I
b = 0.927502 + 0.501106I
4.67220 + 0.02550I 14.8497 + 0.6733I
u = 0.134645 0.584405I
a = 0.197801 + 1.366820I
b = 0.927502 0.501106I
4.67220 0.02550I 14.8497 0.6733I
u = 0.413347 + 0.412272I
a = 1.49091 + 0.92346I
b = 0.707354 0.303831I
1.02330 3.62936I 5.37000 + 9.36655I
u = 0.413347 0.412272I
a = 1.49091 0.92346I
b = 0.707354 + 0.303831I
1.02330 + 3.62936I 5.37000 9.36655I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.372758 + 0.426791I
a = 0.574567 0.058040I
b = 0.625825 0.291328I
1.20365 + 0.84496I 6.02969 0.14737I
u = 0.372758 0.426791I
a = 0.574567 + 0.058040I
b = 0.625825 + 0.291328I
1.20365 0.84496I 6.02969 + 0.14737I
u = 0.233988 + 0.506859I
a = 0.55207 + 2.38792I
b = 0.886599 0.003824I
4.55371 1.42223I 13.6222 + 4.9294I
u = 0.233988 0.506859I
a = 0.55207 2.38792I
b = 0.886599 + 0.003824I
4.55371 + 1.42223I 13.6222 4.9294I
u = 0.16373 + 1.44899I
a = 1.220880 + 0.298307I
b = 0.980392 + 0.272927I
7.19630 1.13487I 0
u = 0.16373 1.44899I
a = 1.220880 0.298307I
b = 0.980392 0.272927I
7.19630 + 1.13487I 0
u = 0.483700 + 0.237329I
a = 0.445616 + 0.385675I
b = 0.083539 0.423218I
0.791769 + 1.065080I 2.72009 3.18149I
u = 0.483700 0.237329I
a = 0.445616 0.385675I
b = 0.083539 + 0.423218I
0.791769 1.065080I 2.72009 + 3.18149I
u = 0.10831 + 1.47851I
a = 1.76451 0.09693I
b = 0.952847 + 0.203501I
7.28087 5.40688I 0
u = 0.10831 1.47851I
a = 1.76451 + 0.09693I
b = 0.952847 0.203501I
7.28087 + 5.40688I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.497221
a = 0.274816
b = 1.21610
2.77118 1.37870
u = 0.05022 + 1.56060I
a = 1.22584 0.84884I
b = 0.893368 + 0.290820I
11.64490 2.37865I 0
u = 0.05022 1.56060I
a = 1.22584 + 0.84884I
b = 0.893368 0.290820I
11.64490 + 2.37865I 0
u = 0.15087 + 1.57314I
a = 2.17718 1.21481I
b = 1.69886 + 0.07549I
18.6332 + 3.8056I 0
u = 0.15087 1.57314I
a = 2.17718 + 1.21481I
b = 1.69886 0.07549I
18.6332 3.8056I 0
u = 0.08895 + 1.58719I
a = 0.128172 0.447048I
b = 0.041223 + 0.495260I
9.03428 0.28268I 0
u = 0.08895 1.58719I
a = 0.128172 + 0.447048I
b = 0.041223 0.495260I
9.03428 + 0.28268I 0
u = 0.02863 + 1.60404I
a = 1.029160 + 0.070588I
b = 0.974979 0.838184I
12.36230 0.51802I 0
u = 0.02863 1.60404I
a = 1.029160 0.070588I
b = 0.974979 + 0.838184I
12.36230 + 0.51802I 0
u = 0.08706 + 1.60503I
a = 0.173991 0.074369I
b = 0.141617 0.998457I
9.99826 5.54560I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.08706 1.60503I
a = 0.173991 + 0.074369I
b = 0.141617 + 0.998457I
9.99826 + 5.54560I 0
u = 0.08728 + 1.61094I
a = 2.73738 0.27305I
b = 1.71337 + 0.05252I
16.8071 + 6.4261I 0
u = 0.08728 1.61094I
a = 2.73738 + 0.27305I
b = 1.71337 0.05252I
16.8071 6.4261I 0
u = 0.16484 + 1.61723I
a = 1.93553 + 0.68337I
b = 1.78156 0.24078I
17.6410 + 5.0053I 0
u = 0.16484 1.61723I
a = 1.93553 0.68337I
b = 1.78156 + 0.24078I
17.6410 5.0053I 0
u = 0.20239 + 1.63940I
a = 1.181390 + 0.350848I
b = 1.078620 0.622811I
13.7279 + 10.9139I 0
u = 0.20239 1.63940I
a = 1.181390 0.350848I
b = 1.078620 + 0.622811I
13.7279 10.9139I 0
u = 0.10820 + 1.65060I
a = 2.27932 + 0.08486I
b = 1.72742 + 0.06163I
16.9343 0.1738I 0
u = 0.10820 1.65060I
a = 2.27932 0.08486I
b = 1.72742 0.06163I
16.9343 + 0.1738I 0
u = 0.26868 + 1.68165I
a = 0.897135 0.531965I
b = 0.951609 + 0.306784I
12.11670 + 3.02699I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.26868 1.68165I
a = 0.897135 + 0.531965I
b = 0.951609 0.306784I
12.11670 3.02699I 0
u = 0.30378 + 1.69326I
a = 1.89667 + 0.85876I
b = 1.74870 0.17461I
15.9285 14.2148I 0
u = 0.30378 1.69326I
a = 1.89667 0.85876I
b = 1.74870 + 0.17461I
15.9285 + 14.2148I 0
u = 0.43555 + 1.77362I
a = 1.73566 0.73698I
b = 1.71505 + 0.08053I
17.8768 4.5753I 0
u = 0.43555 1.77362I
a = 1.73566 + 0.73698I
b = 1.71505 0.08053I
17.8768 + 4.5753I 0
11
II.
I
u
2
= hu
15
+8u
13
+· · ·+b1, u
16
+u
15
+· · ·+a+1, u
17
+10u
15
+· · ·2u1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
u
16
u
15
+ ··· u 1
u
15
8u
13
+ ··· + u + 1
a
1
=
u
16
+ 10u
14
+ ··· 2u 2
u
15
8u
13
+ ··· + u + 1
a
5
=
u
16
10u
14
+ ··· + u + 2
u
15
+ u
14
+ ··· + 2u
3
+ 2u
a
2
=
u
5
3u
3
2u
u
16
u
15
+ ··· u
2
+ u
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
7
=
u
15
u
14
+ ··· + u
3
2u
u
15
+ 9u
13
+ ··· 2u 2
a
11
=
u
6
4u
4
3u
2
+ 1
u
15
+ 8u
13
+ ··· u
2
u
a
6
=
u
16
9u
14
+ ··· + 3u
2
+ 1
u
15
+ u
14
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
3u
15
8u
14
26u
13
24u
12
85u
11
31u
10
126u
9
12u
8
75u
7
+ 6u
6
+ u
5
+ 13u
4
+ 16u
3
+ 19u
2
+ 7u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 3u
16
+ ··· 3u 1
c
2
u
17
+ 3u
15
+ ··· + 2u 1
c
3
u
17
+ 10u
15
+ ··· 2u + 1
c
4
u
17
3u
16
+ ··· 3u + 1
c
5
u
17
+ u
16
+ ··· + 2u
3
+ 1
c
6
, c
7
u
17
12u
15
+ ··· + 2u + 1
c
8
, c
9
u
17
+ 10u
15
+ ··· 2u 1
c
10
u
17
+ 2u
16
+ ··· 3u 1
c
11
, c
12
u
17
12u
15
+ ··· + 2u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
17
17y
16
+ ··· + 11y 1
c
2
y
17
+ 6y
16
+ ··· 6y 1
c
3
, c
8
, c
9
y
17
+ 20y
16
+ ··· 2y 1
c
5
y
17
+ 3y
16
+ ··· + 6y
2
1
c
6
, c
7
, c
11
c
12
y
17
24y
16
+ ··· + 16y 1
c
10
y
17
6y
16
+ ··· + 3y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.139852 + 1.214420I
a = 1.287590 + 0.470581I
b = 1.52103 + 0.06882I
11.11750 4.71969I 12.69339 + 3.70079I
u = 0.139852 1.214420I
a = 1.287590 0.470581I
b = 1.52103 0.06882I
11.11750 + 4.71969I 12.69339 3.70079I
u = 0.770505
a = 0.356369
b = 1.71199
13.5631 10.8690
u = 0.313732 + 0.658301I
a = 2.46686 0.50202I
b = 1.56317 + 0.07758I
8.98775 + 3.06986I 11.77160 5.40163I
u = 0.313732 0.658301I
a = 2.46686 + 0.50202I
b = 1.56317 0.07758I
8.98775 3.06986I 11.77160 + 5.40163I
u = 0.150767 + 1.264220I
a = 0.036312 + 0.695026I
b = 0.280089 + 0.210720I
4.79179 + 3.71423I 13.1910 5.6524I
u = 0.150767 1.264220I
a = 0.036312 0.695026I
b = 0.280089 0.210720I
4.79179 3.71423I 13.1910 + 5.6524I
u = 0.155556 + 1.352930I
a = 1.43538 + 0.81001I
b = 1.195950 + 0.186568I
7.82356 2.21494I 13.60579 + 3.56873I
u = 0.155556 1.352930I
a = 1.43538 0.81001I
b = 1.195950 0.186568I
7.82356 + 2.21494I 13.60579 3.56873I
u = 0.344357 + 0.507264I
a = 1.69631 0.60701I
b = 0.435868 + 0.235200I
1.98177 1.91528I 11.51112 + 7.56473I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.344357 0.507264I
a = 1.69631 + 0.60701I
b = 0.435868 0.235200I
1.98177 + 1.91528I 11.51112 7.56473I
u = 0.413428 + 0.204442I
a = 1.37361 0.56067I
b = 0.983355 + 0.195981I
3.72761 + 0.27179I 7.30557 0.70090I
u = 0.413428 0.204442I
a = 1.37361 + 0.56067I
b = 0.983355 0.195981I
3.72761 0.27179I 7.30557 + 0.70090I
u = 0.06863 + 1.60082I
a = 0.854604 + 0.519619I
b = 0.759245 0.457661I
10.71870 1.63142I 9.76522 + 0.61847I
u = 0.06863 1.60082I
a = 0.854604 0.519619I
b = 0.759245 + 0.457661I
10.71870 + 1.63142I 9.76522 0.61847I
u = 0.21082 + 1.61302I
a = 2.00469 + 0.90354I
b = 1.71420 0.09994I
19.7367 + 3.7909I 9.22182 1.00044I
u = 0.21082 1.61302I
a = 2.00469 0.90354I
b = 1.71420 + 0.09994I
19.7367 3.7909I 9.22182 + 1.00044I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
+ 3u
16
+ ··· 3u 1)(u
65
34u
63
+ ··· + 25u 1)
c
2
(u
17
+ 3u
15
+ ··· + 2u 1)(u
65
5u
64
+ ··· 1840u 529)
c
3
(u
17
+ 10u
15
+ ··· 2u + 1)(u
65
+ u
64
+ ··· + 354u + 173)
c
4
(u
17
3u
16
+ ··· 3u + 1)(u
65
34u
63
+ ··· + 25u 1)
c
5
(u
17
+ u
16
+ ··· + 2u
3
+ 1)(u
65
+ 2u
64
+ ··· + 784u + 131)
c
6
, c
7
(u
17
12u
15
+ ··· + 2u + 1)(u
65
u
64
+ ··· + 16u + 1)
c
8
, c
9
(u
17
+ 10u
15
+ ··· 2u 1)(u
65
+ u
64
+ ··· + 354u + 173)
c
10
(u
17
+ 2u
16
+ ··· 3u 1)(u
65
+ 5u
64
+ ··· + 1163u 215)
c
11
, c
12
(u
17
12u
15
+ ··· + 2u 1)(u
65
u
64
+ ··· + 16u + 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
17
17y
16
+ ··· + 11y 1)(y
65
68y
64
+ ··· 201y 1)
c
2
(y
17
+ 6y
16
+ ··· 6y 1)(y
65
+ 27y
64
+ ··· 5322798y 279841)
c
3
, c
8
, c
9
(y
17
+ 20y
16
+ ··· 2y 1)(y
65
+ 77y
64
+ ··· 683978y 29929)
c
5
(y
17
+ 3y
16
+ ··· + 6y
2
1)(y
65
+ 20y
64
+ ··· 271428y 17161)
c
6
, c
7
, c
11
c
12
(y
17
24y
16
+ ··· + 16y 1)(y
65
87y
64
+ ··· 500y 1)
c
10
(y
17
6y
16
+ ··· + 3y 1)(y
65
25y
64
+ ··· + 3288859y 46225)
18