12a
1243
(K12a
1243
)
A knot diagram
1
Linearized knot diagam
5 6 10 9 2 11 12 1 4 3 8 7
Solving Sequence
8,11
12 7 1 9
3,6
2 5 10 4
c
11
c
7
c
12
c
8
c
6
c
2
c
5
c
10
c
3
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h5.47710 × 10
15
u
50
+ 1.14235 × 10
16
u
49
+ ··· + 3.64380 × 10
16
b 9.84918 × 10
15
,
1.63458 × 10
16
u
50
+ 1.13811 × 10
16
u
49
+ ··· + 1.09314 × 10
17
a 5.47544 × 10
16
, u
51
+ 2u
50
+ ··· 3u 3i
I
u
2
= h−au u
2
+ b + u 1, 2u
2
a + a
2
+ 5u
2
+ 2a 3u + 8, u
3
u
2
+ 2u 1i
I
u
3
= hb, u
2
+ a + 1, u
3
+ u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.48 × 10
15
u
50
+ 1.14 × 10
16
u
49
+ · · · + 3.64 × 10
16
b 9.85 × 10
15
, 1.63 ×
10
16
u
50
+1.14×10
16
u
49
+· · ·+1.09×10
17
a5.48×10
16
, u
51
+2u
50
+· · ·3u3i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
3
=
0.149530u
50
0.104114u
49
+ ··· + 4.89363u + 0.500892
0.150313u
50
0.313505u
49
+ ··· + 0.630080u + 0.270300
a
6
=
u
3
+ 2u
u
3
+ u
a
2
=
0.00864236u
50
0.150838u
49
+ ··· + 4.04860u + 0.105532
0.210594u
50
0.927821u
49
+ ··· + 0.757201u + 0.320503
a
5
=
0.106834u
50
0.00307520u
49
+ ··· + 3.67017u 0.436697
0.133553u
50
0.167686u
49
+ ··· 0.0796052u + 0.0259271
a
10
=
0.440680u
50
+ 0.784124u
49
+ ··· 2.10894u + 0.0232897
0.114496u
50
0.354107u
49
+ ··· + 1.06838u + 0.0329283
a
4
=
0.0918724u
50
+ 0.0332380u
49
+ ··· + 3.96964u 0.414486
0.0811430u
50
0.353168u
49
+ ··· + 0.231766u + 0.517111
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
7943644690210290
18218984011570829
u
50
5242160220330023
18218984011570829
u
49
+ ···
74345173899570890
18218984011570829
u
57601482949200522
18218984011570829
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
51
+ 4u
50
+ ··· + 44u 17
c
3
, c
4
, c
9
c
10
u
51
+ u
50
+ ··· 124u
3
8
c
6
, c
8
u
51
2u
50
+ ··· 231u 87
c
7
, c
11
, c
12
u
51
+ 2u
50
+ ··· 3u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
51
56y
50
+ ··· + 3092y 289
c
3
, c
4
, c
9
c
10
y
51
+ 65y
50
+ ··· + 4352y
2
64
c
6
, c
8
y
51
46y
50
+ ··· 73311y 7569
c
7
, c
11
, c
12
y
51
+ 42y
50
+ ··· + 57y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907928 + 0.131274I
a = 0.85159 + 2.57553I
b = 0.17354 + 1.71169I
18.9001 + 8.0570I 13.49826 3.74079I
u = 0.907928 0.131274I
a = 0.85159 2.57553I
b = 0.17354 1.71169I
18.9001 8.0570I 13.49826 + 3.74079I
u = 0.049806 + 1.119400I
a = 1.65276 0.63158I
b = 0.14103 1.43819I
4.53961 0.47932I 9.08978 0.54111I
u = 0.049806 1.119400I
a = 1.65276 + 0.63158I
b = 0.14103 + 1.43819I
4.53961 + 0.47932I 9.08978 + 0.54111I
u = 0.870747 + 0.070256I
a = 0.10989 1.48062I
b = 0.608525 0.958375I
11.35660 4.92570I 12.66557 + 4.02206I
u = 0.870747 0.070256I
a = 0.10989 + 1.48062I
b = 0.608525 + 0.958375I
11.35660 + 4.92570I 12.66557 4.02206I
u = 0.866790 + 0.044839I
a = 0.44024 3.22463I
b = 0.05531 1.67384I
13.05010 + 3.20345I 12.09771 2.59432I
u = 0.866790 0.044839I
a = 0.44024 + 3.22463I
b = 0.05531 + 1.67384I
13.05010 3.20345I 12.09771 + 2.59432I
u = 0.853858
a = 0.332469
b = 0.869508
8.45310 10.4770
u = 0.645538 + 0.554017I
a = 1.09788 + 1.43143I
b = 0.02763 + 1.69086I
14.2712 2.2782I 11.91209 + 2.93097I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.645538 0.554017I
a = 1.09788 1.43143I
b = 0.02763 1.69086I
14.2712 + 2.2782I 11.91209 2.93097I
u = 0.098307 + 1.231160I
a = 1.087560 + 0.607902I
b = 0.422786 + 0.380273I
1.39334 1.58061I 4.00000 + 0.I
u = 0.098307 1.231160I
a = 1.087560 0.607902I
b = 0.422786 0.380273I
1.39334 + 1.58061I 4.00000 + 0.I
u = 0.761889 + 0.030162I
a = 0.14348 + 1.84705I
b = 0.227333 + 0.836438I
4.19077 2.14878I 11.40445 + 4.59039I
u = 0.761889 0.030162I
a = 0.14348 1.84705I
b = 0.227333 0.836438I
4.19077 + 2.14878I 11.40445 4.59039I
u = 0.488015 + 1.149550I
a = 0.480142 + 1.284100I
b = 0.14196 + 1.72564I
17.4585 3.1002I 0
u = 0.488015 1.149550I
a = 0.480142 1.284100I
b = 0.14196 1.72564I
17.4585 + 3.1002I 0
u = 0.303333 + 1.240150I
a = 0.481754 + 0.904540I
b = 0.082101 + 0.850538I
0.47130 1.69507I 0
u = 0.303333 1.240150I
a = 0.481754 0.904540I
b = 0.082101 0.850538I
0.47130 + 1.69507I 0
u = 0.418137 + 1.207070I
a = 0.181479 0.248186I
b = 0.556081 1.021520I
7.85706 + 0.30900I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.418137 1.207070I
a = 0.181479 + 0.248186I
b = 0.556081 + 1.021520I
7.85706 0.30900I 0
u = 0.052017 + 1.294910I
a = 0.953642 0.051833I
b = 0.447473 0.419214I
4.49060 + 1.57458I 0
u = 0.052017 1.294910I
a = 0.953642 + 0.051833I
b = 0.447473 + 0.419214I
4.49060 1.57458I 0
u = 0.410167 + 1.234410I
a = 0.96089 1.81167I
b = 0.01537 1.67225I
9.37724 + 1.37166I 0
u = 0.410167 1.234410I
a = 0.96089 + 1.81167I
b = 0.01537 + 1.67225I
9.37724 1.37166I 0
u = 0.259573 + 1.277840I
a = 0.313273 + 0.355431I
b = 0.450243 0.039258I
2.27192 + 3.32252I 0
u = 0.259573 1.277840I
a = 0.313273 0.355431I
b = 0.450243 + 0.039258I
2.27192 3.32252I 0
u = 0.332771 + 1.284440I
a = 1.05807 1.05291I
b = 0.338435 0.828395I
0.09882 6.10554I 0
u = 0.332771 1.284440I
a = 1.05807 + 1.05291I
b = 0.338435 + 0.828395I
0.09882 + 6.10554I 0
u = 0.393305 + 1.273120I
a = 0.441102 0.573712I
b = 0.865536 + 0.073675I
4.49930 + 4.47398I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.393305 1.273120I
a = 0.441102 + 0.573712I
b = 0.865536 0.073675I
4.49930 4.47398I 0
u = 0.660643
a = 0.232662
b = 0.401553
1.71027 3.43300
u = 0.148769 + 1.331880I
a = 1.213820 0.003770I
b = 0.05720 + 1.47291I
1.60931 3.17982I 0
u = 0.148769 1.331880I
a = 1.213820 + 0.003770I
b = 0.05720 1.47291I
1.60931 + 3.17982I 0
u = 0.487213 + 0.407368I
a = 0.952102 0.113234I
b = 0.144630 0.903505I
5.05412 + 1.66912I 10.97373 4.62737I
u = 0.487213 0.407368I
a = 0.952102 + 0.113234I
b = 0.144630 + 0.903505I
5.05412 1.66912I 10.97373 + 4.62737I
u = 0.397349 + 1.308030I
a = 1.65562 + 1.61052I
b = 0.08962 + 1.66718I
8.82655 + 7.73768I 0
u = 0.397349 1.308030I
a = 1.65562 1.61052I
b = 0.08962 1.66718I
8.82655 7.73768I 0
u = 0.396413 + 1.325070I
a = 1.20491 + 0.91251I
b = 0.640552 + 0.900828I
6.99006 9.47255I 0
u = 0.396413 1.325070I
a = 1.20491 0.91251I
b = 0.640552 0.900828I
6.99006 + 9.47255I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.153785 + 1.383640I
a = 0.828540 0.587282I
b = 0.236607 + 0.683213I
0.58476 + 3.87146I 0
u = 0.153785 1.383640I
a = 0.828540 + 0.587282I
b = 0.236607 0.683213I
0.58476 3.87146I 0
u = 0.40573 + 1.36865I
a = 1.84188 1.07241I
b = 0.19235 1.69170I
15.8596 + 12.7667I 0
u = 0.40573 1.36865I
a = 1.84188 + 1.07241I
b = 0.19235 + 1.69170I
15.8596 12.7667I 0
u = 0.15668 + 1.46609I
a = 0.952170 + 0.297878I
b = 0.06047 1.64270I
7.63888 4.94907I 0
u = 0.15668 1.46609I
a = 0.952170 0.297878I
b = 0.06047 + 1.64270I
7.63888 + 4.94907I 0
u = 0.424316 + 0.265115I
a = 1.41012 2.43053I
b = 0.00144 1.49759I
6.57052 1.14577I 8.04300 + 6.02810I
u = 0.424316 0.265115I
a = 1.41012 + 2.43053I
b = 0.00144 + 1.49759I
6.57052 + 1.14577I 8.04300 6.02810I
u = 0.351513
a = 2.15459
b = 0.342179
2.23327 1.33350
u = 0.203339 + 0.264461I
a = 0.777669 + 0.662838I
b = 0.175873 + 0.407856I
0.158036 + 0.749712I 4.84555 9.27744I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.203339 0.264461I
a = 0.777669 0.662838I
b = 0.175873 0.407856I
0.158036 0.749712I 4.84555 + 9.27744I
10
II.
I
u
2
= h−au u
2
+ b + u 1, 2u
2
a + a
2
+ 5u
2
+ 2a 3u + 8, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
2
u + 1
a
1
=
u
2
+ 1
u
2
u + 1
a
9
=
1
0
a
3
=
a
au + u
2
u + 1
a
6
=
u
2
+ 1
u
2
u + 1
a
2
=
u
2
+ a + 1
au + 2u
2
2u + 2
a
5
=
a
au u
2
+ u 1
a
10
=
u
2
a + au 2u
2
a + 2u 4
2
a
4
=
au + u
2
a u + 1
au u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 16
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u + 1)
6
c
3
, c
4
, c
9
c
10
(u
2
+ 2)
3
c
5
(u 1)
6
c
6
, c
8
(u
3
u
2
+ 1)
2
c
7
(u
3
+ u
2
+ 2u + 1)
2
c
11
, c
12
(u
3
u
2
+ 2u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
9
c
10
(y + 2)
6
c
6
, c
8
(y
3
y
2
+ 2y 1)
2
c
7
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.391035 0.735607I
b = 1.414210I
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.215080 + 1.307140I
a = 1.71575 0.38895I
b = 1.414210I
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.391035 + 0.735607I
b = 1.414210I
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.215080 1.307140I
a = 1.71575 + 0.38895I
b = 1.414210I
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.569840
a = 1.32472 + 2.48177I
b = 1.414210I
7.69319 15.0200
u = 0.569840
a = 1.32472 2.48177I
b = 1.414210I
7.69319 15.0200
14
III. I
u
3
= hb, u
2
+ a + 1, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
2
u 1
a
1
=
u
2
+ 1
u
2
+ u + 1
a
9
=
1
0
a
3
=
u
2
1
0
a
6
=
u
2
1
u
2
u 1
a
2
=
0
u
2
+ u + 1
a
5
=
u
2
1
0
a
10
=
1
0
a
4
=
u
2
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
4u 16
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
9
c
10
u
3
c
5
(u + 1)
3
c
6
, c
8
u
3
+ u
2
1
c
7
u
3
u
2
+ 2u 1
c
11
, c
12
u
3
+ u
2
+ 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
9
c
10
y
3
c
6
, c
8
y
3
y
2
+ 2y 1
c
7
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.662359 + 0.562280I
b = 0
1.37919 + 2.82812I 5.16553 1.85489I
u = 0.215080 1.307140I
a = 0.662359 0.562280I
b = 0
1.37919 2.82812I 5.16553 + 1.85489I
u = 0.569840
a = 1.32472
b = 0
2.75839 15.6690
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
3
)(u + 1)
6
(u
51
+ 4u
50
+ ··· + 44u 17)
c
3
, c
4
, c
9
c
10
u
3
(u
2
+ 2)
3
(u
51
+ u
50
+ ··· 124u
3
8)
c
5
((u 1)
6
)(u + 1)
3
(u
51
+ 4u
50
+ ··· + 44u 17)
c
6
, c
8
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
51
2u
50
+ ··· 231u 87)
c
7
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
51
+ 2u
50
+ ··· 3u 3)
c
11
, c
12
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
51
+ 2u
50
+ ··· 3u 3)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
((y 1)
9
)(y
51
56y
50
+ ··· + 3092y 289)
c
3
, c
4
, c
9
c
10
y
3
(y + 2)
6
(y
51
+ 65y
50
+ ··· + 4352y
2
64)
c
6
, c
8
((y
3
y
2
+ 2y 1)
3
)(y
51
46y
50
+ ··· 73311y 7569)
c
7
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
3
)(y
51
+ 42y
50
+ ··· + 57y 9)
20