12a
1244
(K12a
1244
)
A knot diagram
1
Linearized knot diagam
5 6 10 9 11 3 12 1 4 2 7 8
Solving Sequence
3,10 4,6
7 2 11 12 9 5 1 8
c
3
c
6
c
2
c
10
c
11
c
9
c
4
c
1
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h5.55213 × 10
84
u
75
1.16390 × 10
85
u
74
+ ··· + 5.41696 × 10
85
b + 4.82475 × 10
85
,
5.54157 × 10
84
u
75
2.95347 × 10
84
u
74
+ ··· + 5.41696 × 10
85
a 3.16627 × 10
86
, u
76
u
75
+ ··· + 4u 8i
I
u
2
= h−u
16
9u
14
31u
12
u
11
49u
10
6u
9
31u
8
12u
7
9u
5
+ 4u
4
2u
3
+ u
2
+ b u + 1,
u
16
+ u
15
+ 10u
14
+ 9u
13
+ 40u
12
+ 33u
11
+ 81u
10
+ 63u
9
+ 86u
8
+ 66u
7
+ 44u
6
+ 36u
5
+ 9u
4
+ 8u
3
+ a 2,
u
17
+ 10u
15
+ 40u
13
+ u
12
+ 80u
11
+ 7u
10
+ 80u
9
+ 18u
8
+ 31u
7
+ 21u
6
4u
5
+ 11u
4
5u
3
+ 3u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.55 × 10
84
u
75
1.16 × 10
85
u
74
+ · · · + 5.42 × 10
85
b + 4.82 × 10
85
, 5.54 ×
10
84
u
75
2.95×10
84
u
74
+· · ·+5.42×10
85
a3.17×10
86
, u
76
u
75
+· · ·+4u8i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
0.102300u
75
+ 0.0545226u
74
+ ··· 6.18614u + 5.84511
0.102495u
75
+ 0.214862u
74
+ ··· + 6.25886u 0.890674
a
7
=
0.204796u
75
+ 0.269385u
74
+ ··· + 0.0727163u + 4.95443
0.102495u
75
+ 0.214862u
74
+ ··· + 6.25886u 0.890674
a
2
=
0.108222u
75
0.118173u
74
+ ··· 13.2901u 1.23742
0.0265752u
75
0.118287u
74
+ ··· 5.18142u 0.132099
a
11
=
0.179021u
75
0.179939u
74
+ ··· 9.84024u 0.938082
0.0355776u
75
0.0834769u
74
+ ··· 1.36926u 0.250356
a
12
=
0.192907u
75
0.137353u
74
+ ··· 9.43677u 5.08532
0.0863896u
75
0.0566665u
74
+ ··· 10.9587u 0.256097
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
1
=
0.0664020u
75
0.174533u
74
+ ··· 16.3898u 1.57130
0.0196414u
75
0.0913926u
74
+ ··· 5.73736u 0.0549055
a
8
=
0.272464u
75
0.292969u
74
+ ··· 18.6154u 3.01996
0.155586u
75
0.133803u
74
+ ··· 10.7797u 0.765404
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.175958u
75
0.0797037u
74
+ ··· + 21.9858u + 2.71207
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
76
+ 5u
75
+ ··· + 5251032u + 1662433
c
2
, c
6
u
76
20u
74
+ ··· 13u + 1
c
3
, c
4
, c
9
u
76
+ u
75
+ ··· 4u 8
c
5
u
76
+ u
75
+ ··· 39u + 19
c
7
, c
8
, c
11
c
12
u
76
u
75
+ ··· 122u 19
c
10
u
76
4u
75
+ ··· + 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
76
39y
75
+ ··· 83103653061344y + 2763683479489
c
2
, c
6
y
76
40y
75
+ ··· 75y + 1
c
3
, c
4
, c
9
y
76
+ 83y
75
+ ··· + 1264y + 64
c
5
y
76
5y
75
+ ··· 7791y + 361
c
7
, c
8
, c
11
c
12
y
76
97y
75
+ ··· 10590y + 361
c
10
y
76
+ 60y
74
+ ··· 172y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.301272 + 0.930495I
a = 0.150821 + 0.775050I
b = 1.183940 + 0.498727I
7.96110 + 4.04129I 0
u = 0.301272 0.930495I
a = 0.150821 0.775050I
b = 1.183940 0.498727I
7.96110 4.04129I 0
u = 0.776626 + 0.567863I
a = 1.77812 0.63034I
b = 1.176910 0.523415I
0.29651 8.26948I 0
u = 0.776626 0.567863I
a = 1.77812 + 0.63034I
b = 1.176910 + 0.523415I
0.29651 + 8.26948I 0
u = 0.847523 + 0.643030I
a = 1.086890 + 0.520197I
b = 1.037760 0.378007I
0.24259 + 2.84206I 0
u = 0.847523 0.643030I
a = 1.086890 0.520197I
b = 1.037760 + 0.378007I
0.24259 2.84206I 0
u = 0.710046 + 0.577141I
a = 0.119604 0.132006I
b = 0.240878 + 1.059360I
11.37560 4.60303I 6.80265 + 0.I
u = 0.710046 0.577141I
a = 0.119604 + 0.132006I
b = 0.240878 1.059360I
11.37560 + 4.60303I 6.80265 + 0.I
u = 0.122145 + 1.118440I
a = 0.78499 + 1.42762I
b = 0.862415 + 0.040383I
3.52211 0.25493I 0
u = 0.122145 1.118440I
a = 0.78499 1.42762I
b = 0.862415 0.040383I
3.52211 + 0.25493I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.406456 + 0.744068I
a = 1.14186 1.03625I
b = 0.925552 + 0.226684I
1.76999 1.00907I 2.09148 2.14646I
u = 0.406456 0.744068I
a = 1.14186 + 1.03625I
b = 0.925552 0.226684I
1.76999 + 1.00907I 2.09148 + 2.14646I
u = 0.950096 + 0.671778I
a = 1.49721 + 0.52951I
b = 1.229350 + 0.610141I
8.31286 + 10.47230I 0
u = 0.950096 0.671778I
a = 1.49721 0.52951I
b = 1.229350 0.610141I
8.31286 10.47230I 0
u = 0.169965 + 1.171850I
a = 0.395900 + 0.455510I
b = 1.34834 + 0.68368I
8.01890 + 3.95701I 0
u = 0.169965 1.171850I
a = 0.395900 0.455510I
b = 1.34834 0.68368I
8.01890 3.95701I 0
u = 0.803294
a = 1.44653
b = 1.47863
4.69299 1.19240
u = 0.789691
a = 1.63403
b = 0.551119
1.59784 8.69720
u = 0.783581
a = 2.21801
b = 0.157298
10.7466 11.2370
u = 0.512045 + 0.531509I
a = 0.003817 + 0.248065I
b = 0.161163 0.847094I
2.70752 + 3.32928I 6.27624 7.23745I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.512045 0.531509I
a = 0.003817 0.248065I
b = 0.161163 + 0.847094I
2.70752 3.32928I 6.27624 + 7.23745I
u = 1.071010 + 0.678965I
a = 0.950965 0.378857I
b = 1.110750 + 0.472733I
8.15172 3.82370I 0
u = 1.071010 0.678965I
a = 0.950965 + 0.378857I
b = 1.110750 0.472733I
8.15172 + 3.82370I 0
u = 0.223516 + 1.262430I
a = 0.571485 0.884942I
b = 1.145130 0.712804I
1.79598 3.34060I 0
u = 0.223516 1.262430I
a = 0.571485 + 0.884942I
b = 1.145130 + 0.712804I
1.79598 + 3.34060I 0
u = 0.546836 + 0.411776I
a = 2.48447 + 0.89729I
b = 1.092580 + 0.407714I
2.63552 + 4.45849I 2.79752 6.64900I
u = 0.546836 0.411776I
a = 2.48447 0.89729I
b = 1.092580 0.407714I
2.63552 4.45849I 2.79752 + 6.64900I
u = 0.642650 + 0.227533I
a = 2.05134 + 0.87646I
b = 0.062140 + 0.342103I
10.74520 0.02289I 9.54952 0.49322I
u = 0.642650 0.227533I
a = 2.05134 0.87646I
b = 0.062140 0.342103I
10.74520 + 0.02289I 9.54952 + 0.49322I
u = 0.067601 + 1.338650I
a = 0.787894 0.164053I
b = 1.348590 0.183843I
1.77410 1.95331I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.067601 1.338650I
a = 0.787894 + 0.164053I
b = 1.348590 + 0.183843I
1.77410 + 1.95331I 0
u = 0.063904 + 0.655723I
a = 0.629348 0.569483I
b = 0.838089 0.268306I
0.65753 1.80944I 6.25762 + 5.56390I
u = 0.063904 0.655723I
a = 0.629348 + 0.569483I
b = 0.838089 + 0.268306I
0.65753 + 1.80944I 6.25762 5.56390I
u = 0.083384 + 1.380440I
a = 0.327507 + 0.955301I
b = 1.12997 + 0.91352I
3.01556 + 3.75046I 0
u = 0.083384 1.380440I
a = 0.327507 0.955301I
b = 1.12997 0.91352I
3.01556 3.75046I 0
u = 0.604756 + 0.005334I
a = 1.79141 + 0.05856I
b = 1.138290 + 0.228148I
2.07647 0.27911I 4.81259 2.39158I
u = 0.604756 0.005334I
a = 1.79141 0.05856I
b = 1.138290 0.228148I
2.07647 + 0.27911I 4.81259 + 2.39158I
u = 0.549686
a = 1.57697
b = 0.170519
1.64568 6.18920
u = 0.275544 + 0.445603I
a = 0.499599 0.378693I
b = 0.071648 + 0.410281I
0.007012 1.042730I 0.28024 + 6.10679I
u = 0.275544 0.445603I
a = 0.499599 + 0.378693I
b = 0.071648 0.410281I
0.007012 + 1.042730I 0.28024 6.10679I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.29973 + 1.45067I
a = 1.099410 + 0.614366I
b = 0.975981 + 0.422982I
6.74604 + 4.17883I 0
u = 0.29973 1.45067I
a = 1.099410 0.614366I
b = 0.975981 0.422982I
6.74604 4.17883I 0
u = 0.05425 + 1.48830I
a = 1.04203 + 1.48061I
b = 1.016840 + 0.455138I
6.76022 1.59431I 0
u = 0.05425 1.48830I
a = 1.04203 1.48061I
b = 1.016840 0.455138I
6.76022 + 1.59431I 0
u = 0.02144 + 1.49751I
a = 0.234003 0.908984I
b = 1.15010 1.02860I
11.48080 4.04250I 0
u = 0.02144 1.49751I
a = 0.234003 + 0.908984I
b = 1.15010 + 1.02860I
11.48080 + 4.04250I 0
u = 0.08422 + 1.50043I
a = 0.82646 1.61332I
b = 0.820930 0.456119I
16.7189 1.7521I 0
u = 0.08422 1.50043I
a = 0.82646 + 1.61332I
b = 0.820930 + 0.456119I
16.7189 + 1.7521I 0
u = 0.16069 + 1.50054I
a = 1.08147 1.21080I
b = 1.160330 0.534577I
3.69831 + 6.96075I 0
u = 0.16069 1.50054I
a = 1.08147 + 1.21080I
b = 1.160330 + 0.534577I
3.69831 6.96075I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.05735 + 1.50893I
a = 0.293801 0.276830I
b = 0.152043 0.794423I
6.56407 2.10121I 0
u = 0.05735 1.50893I
a = 0.293801 + 0.276830I
b = 0.152043 + 0.794423I
6.56407 + 2.10121I 0
u = 0.16818 + 1.52267I
a = 0.231387 + 0.325071I
b = 0.332142 + 1.102730I
9.48501 + 5.84613I 0
u = 0.16818 1.52267I
a = 0.231387 0.325071I
b = 0.332142 1.102730I
9.48501 5.84613I 0
u = 0.01840 + 1.57131I
a = 0.557579 + 0.464452I
b = 0.585914 + 0.385750I
8.17034 2.09468I 0
u = 0.01840 1.57131I
a = 0.557579 0.464452I
b = 0.585914 0.385750I
8.17034 + 2.09468I 0
u = 0.25000 + 1.55224I
a = 0.96650 + 1.06969I
b = 1.223910 + 0.647769I
6.66209 12.00420I 0
u = 0.25000 1.55224I
a = 0.96650 1.06969I
b = 1.223910 0.647769I
6.66209 + 12.00420I 0
u = 0.25184 + 1.55488I
a = 0.201337 0.338249I
b = 0.471945 1.250080I
18.3759 8.1937I 0
u = 0.25184 1.55488I
a = 0.201337 + 0.338249I
b = 0.471945 + 1.250080I
18.3759 + 8.1937I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.09185 + 1.63177I
a = 0.321675 0.710395I
b = 0.867349 0.470399I
16.5562 + 5.5782I 0
u = 0.09185 1.63177I
a = 0.321675 + 0.710395I
b = 0.867349 + 0.470399I
16.5562 5.5782I 0
u = 0.38724 + 1.58875I
a = 1.29378 0.74570I
b = 0.808299 0.437665I
16.6346 5.1140I 0
u = 0.38724 1.58875I
a = 1.29378 + 0.74570I
b = 0.808299 + 0.437665I
16.6346 + 5.1140I 0
u = 0.13539 + 1.63639I
a = 0.216828 + 0.055600I
b = 0.647173 + 0.330956I
7.91994 0.77322I 0
u = 0.13539 1.63639I
a = 0.216828 0.055600I
b = 0.647173 0.330956I
7.91994 + 0.77322I 0
u = 0.31387 + 1.61627I
a = 0.873443 1.007800I
b = 1.25014 0.74147I
15.8002 + 15.1438I 0
u = 0.31387 1.61627I
a = 0.873443 + 1.007800I
b = 1.25014 + 0.74147I
15.8002 15.1438I 0
u = 0.169958 + 0.261458I
a = 4.41670 4.26044I
b = 0.880574 0.265951I
0.726457 0.785371I 6.43366 + 8.53278I
u = 0.169958 0.261458I
a = 4.41670 + 4.26044I
b = 0.880574 + 0.265951I
0.726457 + 0.785371I 6.43366 8.53278I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.275955 + 0.067448I
a = 2.92659 0.88521I
b = 1.094950 0.576332I
1.75321 + 2.55068I 4.02344 10.63288I
u = 0.275955 0.067448I
a = 2.92659 + 0.88521I
b = 1.094950 + 0.576332I
1.75321 2.55068I 4.02344 + 10.63288I
u = 0.045119 + 0.271744I
a = 0.57010 + 2.42374I
b = 1.14455 + 0.89843I
5.33747 3.77193I 0.82553 + 8.23011I
u = 0.045119 0.271744I
a = 0.57010 2.42374I
b = 1.14455 0.89843I
5.33747 + 3.77193I 0.82553 8.23011I
u = 0.27864 + 1.72170I
a = 0.177452 0.047796I
b = 0.883732 0.445558I
16.3787 + 1.4352I 0
u = 0.27864 1.72170I
a = 0.177452 + 0.047796I
b = 0.883732 + 0.445558I
16.3787 1.4352I 0
12
II.
I
u
2
= h−u
16
9u
14
+· · ·+b+1, u
16
+u
15
+· · ·+a2, u
17
+10u
15
+· · ·2u+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
u
16
u
15
+ ··· 8u
3
+ 2
u
16
+ 9u
14
+ ··· + u 1
a
7
=
u
15
u
14
+ ··· + u + 1
u
16
+ 9u
14
+ ··· + u 1
a
2
=
u
16
+ 10u
14
+ ··· + u 1
u
16
u
15
+ ··· 4u
2
+ 2u
a
11
=
u
14
u
13
+ ··· 2u + 1
u
15
+ u
14
+ ··· + u
3
+ u
a
12
=
u
16
u
15
+ ··· u 1
u
16
u
15
+ ··· + 3u 1
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
1
=
u
16
+ 10u
14
+ ··· + u 1
u
15
u
14
+ ··· 2u
2
+ u
a
8
=
2u
16
u
15
+ ··· 2u + 1
2u
16
u
15
+ ··· + 3u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
16
+ 2u
15
61u
14
+ 16u
13
204u
12
+ 39u
11
318u
10
+
11u
9
216u
8
74u
7
34u
6
88u
5
+ 20u
4
32u
3
+ 17u
2
11u + 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 3u
15
+ ··· + 2u 1
c
2
u
17
3u
16
+ ··· 3u + 1
c
3
, c
4
u
17
+ 10u
15
+ ··· 2u + 1
c
5
u
17
+ 2u
14
+ ··· + u + 1
c
6
u
17
+ 3u
16
+ ··· 3u 1
c
7
, c
8
u
17
12u
15
+ ··· + 2u + 1
c
9
u
17
+ 10u
15
+ ··· 2u 1
c
10
u
17
3u
16
+ ··· 2u + 1
c
11
, c
12
u
17
12u
15
+ ··· + 2u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 6y
16
+ ··· 6y 1
c
2
, c
6
y
17
11y
16
+ ··· + 17y 1
c
3
, c
4
, c
9
y
17
+ 20y
16
+ ··· 2y 1
c
5
y
17
6y
15
+ ··· 3y 1
c
7
, c
8
, c
11
c
12
y
17
24y
16
+ ··· + 16y 1
c
10
y
17
3y
16
+ ··· + 6y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.139852 + 1.214420I
a = 0.441985 + 0.675736I
b = 1.41103 + 1.05280I
7.82761 + 4.71969I 3.03630 8.97868I
u = 0.139852 1.214420I
a = 0.441985 0.675736I
b = 1.41103 1.05280I
7.82761 4.71969I 3.03630 + 8.97868I
u = 0.770505
a = 3.24311
b = 0.627479
10.2732 6.21040
u = 0.313732 + 0.658301I
a = 0.790014 0.247073I
b = 1.085060 + 0.673907I
5.69788 3.06986I 4.15450 0.28299I
u = 0.313732 0.658301I
a = 0.790014 + 0.247073I
b = 1.085060 0.673907I
5.69788 + 3.06986I 4.15450 + 0.28299I
u = 0.150767 + 1.264220I
a = 0.527362 0.894224I
b = 1.20771 0.79995I
1.50192 3.71423I 3.27081 + 10.07592I
u = 0.150767 1.264220I
a = 0.527362 + 0.894224I
b = 1.20771 + 0.79995I
1.50192 + 3.71423I 3.27081 10.07592I
u = 0.155556 + 1.352930I
a = 0.52002 + 1.33989I
b = 0.974685 + 0.508862I
4.53369 + 2.21494I 4.95135 2.79789I
u = 0.155556 1.352930I
a = 0.52002 1.33989I
b = 0.974685 0.508862I
4.53369 2.21494I 4.95135 + 2.79789I
u = 0.344357 + 0.507264I
a = 1.110850 + 0.838168I
b = 0.997031 0.404432I
1.30810 + 1.91528I 2.43691 2.56388I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.344357 0.507264I
a = 1.110850 0.838168I
b = 0.997031 + 0.404432I
1.30810 1.91528I 2.43691 + 2.56388I
u = 0.413428 + 0.204442I
a = 3.32259 1.68034I
b = 0.866225 + 0.129684I
0.437743 0.271791I 1.03671 2.69788I
u = 0.413428 0.204442I
a = 3.32259 + 1.68034I
b = 0.866225 0.129684I
0.437743 + 0.271791I 1.03671 + 2.69788I
u = 0.06863 + 1.60082I
a = 0.023930 + 0.508617I
b = 0.629370 + 0.088764I
7.42886 + 1.63142I 1.52360 3.06037I
u = 0.06863 1.60082I
a = 0.023930 0.508617I
b = 0.629370 0.088764I
7.42886 1.63142I 1.52360 + 3.06037I
u = 0.21082 + 1.61302I
a = 0.379564 1.071330I
b = 0.539259 0.235493I
16.4469 3.7909I 6.31007 + 0.92878I
u = 0.21082 1.61302I
a = 0.379564 + 1.071330I
b = 0.539259 + 0.235493I
16.4469 + 3.7909I 6.31007 0.92878I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
+ 3u
15
+ ··· + 2u 1)(u
76
+ 5u
75
+ ··· + 5251032u + 1662433)
c
2
(u
17
3u
16
+ ··· 3u + 1)(u
76
20u
74
+ ··· 13u + 1)
c
3
, c
4
(u
17
+ 10u
15
+ ··· 2u + 1)(u
76
+ u
75
+ ··· 4u 8)
c
5
(u
17
+ 2u
14
+ ··· + u + 1)(u
76
+ u
75
+ ··· 39u + 19)
c
6
(u
17
+ 3u
16
+ ··· 3u 1)(u
76
20u
74
+ ··· 13u + 1)
c
7
, c
8
(u
17
12u
15
+ ··· + 2u + 1)(u
76
u
75
+ ··· 122u 19)
c
9
(u
17
+ 10u
15
+ ··· 2u 1)(u
76
+ u
75
+ ··· 4u 8)
c
10
(u
17
3u
16
+ ··· 2u + 1)(u
76
4u
75
+ ··· + 14u + 1)
c
11
, c
12
(u
17
12u
15
+ ··· + 2u 1)(u
76
u
75
+ ··· 122u 19)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
+ 6y
16
+ ··· 6y 1)
· (y
76
39y
75
+ ··· 83103653061344y + 2763683479489)
c
2
, c
6
(y
17
11y
16
+ ··· + 17y 1)(y
76
40y
75
+ ··· 75y + 1)
c
3
, c
4
, c
9
(y
17
+ 20y
16
+ ··· 2y 1)(y
76
+ 83y
75
+ ··· + 1264y + 64)
c
5
(y
17
6y
15
+ ··· 3y 1)(y
76
5y
75
+ ··· 7791y + 361)
c
7
, c
8
, c
11
c
12
(y
17
24y
16
+ ··· + 16y 1)(y
76
97y
75
+ ··· 10590y + 361)
c
10
(y
17
3y
16
+ ··· + 6y 1)(y
76
+ 60y
74
+ ··· 172y + 1)
19