12a
1246
(K12a
1246
)
A knot diagram
1
Linearized knot diagam
5 6 11 9 2 10 12 4 1 3 7 8
Solving Sequence
4,8
9
5,12
1 2 10 7 6 11 3
c
8
c
4
c
12
c
1
c
9
c
7
c
6
c
11
c
3
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−585818u
22
+ 2005165u
21
+ ··· + 356583b 681791,
1498861u
22
5624519u
21
+ ··· + 1069749a + 1574450, u
23
4u
22
+ ··· + 3u 1i
I
u
2
= h9.48071 × 10
132
u
59
+ 7.49196 × 10
132
u
58
+ ··· + 7.42425 × 10
133
b + 1.33608 × 10
135
,
1.27527 × 10
151
u
59
+ 2.38351 × 10
151
u
58
+ ··· + 1.51769 × 10
151
a 5.45451 × 10
153
,
u
60
+ u
59
+ ··· + 3878u + 547i
I
u
3
= hu
11
+ 6u
10
11u
9
40u
8
+ 38u
7
+ 99u
6
52u
5
146u
4
+ 56u
3
+ 125u
2
+ 9b 52u 10,
8u
11
+ 9u
10
+ 49u
9
52u
8
109u
7
+ 96u
6
+ 158u
5
125u
4
133u
3
+ 131u
2
+ 3a 16u 1,
u
12
2u
11
5u
10
+ 12u
9
+ 7u
8
25u
7
7u
6
+ 36u
5
35u
3
+ 19u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.86 × 10
5
u
22
+ 2.01 × 10
6
u
21
+ · · · + 3.57 × 10
5
b 6.82 × 10
5
, 1.50 ×
10
6
u
22
5.62×10
6
u
21
+· · ·+1.07×10
6
a+1.57×10
6
, u
23
4u
22
+· · ·+3u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
1.40113u
22
+ 5.25779u
21
+ ··· + 2.52143u 1.47179
1.64287u
22
5.62328u
21
+ ··· 3.97561u + 1.91201
a
1
=
0.241732u
22
0.365484u
21
+ ··· 1.45418u + 0.440218
1.64287u
22
5.62328u
21
+ ··· 3.97561u + 1.91201
a
2
=
0.172921u
22
0.600708u
21
+ ··· 1.02124u 0.0922385
0.539597u
22
2.22583u
21
+ ··· 2.94596u + 1.93400
a
10
=
u
2
+ 1
1.23409u
22
+ 4.60184u
21
+ ··· + 2.32068u 2.46359
a
7
=
1.40113u
22
+ 5.25779u
21
+ ··· + 2.52143u 1.47179
1.22478u
22
4.59343u
21
+ ··· 2.37387u + 2.42254
a
6
=
0.172921u
22
0.600708u
21
+ ··· 1.02124u 0.0922385
0.910088u
22
+ 3.13290u
21
+ ··· + 1.57607u 1.05067
a
11
=
1
0.478935u
22
+ 2.36308u
21
+ ··· + 0.499732u 2.01626
a
3
=
u
0.447338u
22
1.03420u
21
+ ··· + 0.420550u 0.478935
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6043223
1069749
u
22
+
20837542
1069749
u
21
+ ··· +
15394660
1069749
u
16108082
1069749
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
3(3u
23
+ 39u
22
+ ··· + 48u 32)
c
3
, c
4
, c
8
c
10
u
23
4u
22
+ ··· + 3u 1
c
6
, c
9
u
23
+ u
22
+ ··· + 39u + 3
c
7
, c
11
, c
12
3(3u
23
+ 42u
22
+ ··· + 160u + 64)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
9(9y
23
261y
22
+ ··· 256y 1024)
c
3
, c
4
, c
8
c
10
y
23
14y
22
+ ··· + 3y 1
c
6
, c
9
y
23
+ 3y
22
+ ··· + 1557y 9
c
7
, c
11
, c
12
9(9y
23
234y
22
+ ··· + 54272y 4096)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.002405 + 1.009230I
a = 2.10309 + 0.54054I
b = 1.44603 + 0.11464I
1.64475 + 3.69178I 0.02857 2.86809I
u = 0.002405 1.009230I
a = 2.10309 0.54054I
b = 1.44603 0.11464I
1.64475 3.69178I 0.02857 + 2.86809I
u = 1.02639
a = 0.734489
b = 2.36149
3.39545 14.6070
u = 0.009683 + 0.858301I
a = 0.629661 + 0.211913I
b = 0.426574 + 0.480115I
4.40513 1.65649I 4.18188 + 3.97830I
u = 0.009683 0.858301I
a = 0.629661 0.211913I
b = 0.426574 0.480115I
4.40513 + 1.65649I 4.18188 3.97830I
u = 0.064630 + 0.840106I
a = 2.05534 0.19633I
b = 1.48214 0.04605I
7.60618 1.61468I 5.58840 + 3.35209I
u = 0.064630 0.840106I
a = 2.05534 + 0.19633I
b = 1.48214 + 0.04605I
7.60618 + 1.61468I 5.58840 3.35209I
u = 1.090900 + 0.454580I
a = 1.08976 1.11362I
b = 1.44888 0.45871I
1.69425 6.98980I 2.46764 + 7.25888I
u = 1.090900 0.454580I
a = 1.08976 + 1.11362I
b = 1.44888 + 0.45871I
1.69425 + 6.98980I 2.46764 7.25888I
u = 1.226010 + 0.358839I
a = 0.467670 + 0.349816I
b = 0.371119 + 1.025590I
5.65901 7.48932I 7.43506 + 8.54905I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.226010 0.358839I
a = 0.467670 0.349816I
b = 0.371119 1.025590I
5.65901 + 7.48932I 7.43506 8.54905I
u = 1.298790 + 0.244302I
a = 0.444127 0.222003I
b = 0.801483 0.900498I
12.78890 5.46316I 9.57232 + 3.33503I
u = 1.298790 0.244302I
a = 0.444127 + 0.222003I
b = 0.801483 + 0.900498I
12.78890 + 5.46316I 9.57232 3.33503I
u = 1.29721 + 0.58581I
a = 1.26120 + 0.99604I
b = 1.48832 + 0.38565I
0.26795 + 12.49270I 3.25634 8.76270I
u = 1.29721 0.58581I
a = 1.26120 0.99604I
b = 1.48832 0.38565I
0.26795 12.49270I 3.25634 + 8.76270I
u = 1.42314 + 0.44151I
a = 0.487234 0.317383I
b = 0.440971 0.938644I
13.7809 + 11.5076I 9.22167 6.83714I
u = 1.42314 0.44151I
a = 0.487234 + 0.317383I
b = 0.440971 + 0.938644I
13.7809 11.5076I 9.22167 + 6.83714I
u = 0.473594
a = 1.52002
b = 1.65788
7.50154 23.5170
u = 0.164998 + 0.441187I
a = 0.641980 0.098310I
b = 0.521990 0.233072I
0.981568 + 0.658500I 5.66649 3.03192I
u = 0.164998 0.441187I
a = 0.641980 + 0.098310I
b = 0.521990 + 0.233072I
0.981568 0.658500I 5.66649 + 3.03192I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46504 + 0.62403I
a = 1.31309 0.92775I
b = 1.50798 0.35891I
7.5447 16.2015I 5.54952 + 7.59036I
u = 1.46504 0.62403I
a = 1.31309 + 0.92775I
b = 1.50798 + 0.35891I
7.5447 + 16.2015I 5.54952 7.59036I
u = 0.383297
a = 1.55813
b = 0.358207
1.00078 13.8410
7
II. I
u
2
= h9.48 × 10
132
u
59
+ 7.49 × 10
132
u
58
+ · · · + 7.42 × 10
133
b + 1.34 ×
10
135
, 1.28 × 10
151
u
59
+ 2.38 × 10
151
u
58
+ · · · + 1.52 × 10
151
a 5.45 ×
10
153
, u
60
+ u
59
+ · · · + 3878u + 547i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
0.840267u
59
1.57048u
58
+ ··· + 2940.26u + 359.394
0.127699u
59
0.100912u
58
+ ··· 65.0761u 17.9961
a
1
=
0.967967u
59
1.67139u
58
+ ··· + 2875.18u + 341.398
0.127699u
59
0.100912u
58
+ ··· 65.0761u 17.9961
a
2
=
0.918075u
59
1.76510u
58
+ ··· + 3363.75u + 412.637
0.104523u
59
0.0906565u
58
+ ··· 24.0762u 10.6894
a
10
=
1.70374u
59
3.43508u
58
+ ··· + 6797.59u + 836.982
1.05872u
59
+ 2.27370u
58
+ ··· 4904.73u 619.679
a
7
=
0.925260u
59
+ 2.03609u
58
+ ··· 4447.53u 559.148
0.259425u
59
+ 0.496942u
58
+ ··· 972.189u 117.868
a
6
=
1.43148u
59
2.78713u
58
+ ··· + 5519.38u + 680.124
0.157674u
59
0.275409u
58
+ ··· + 484.781u + 59.3485
a
11
=
0.386613u
59
+ 0.815067u
58
+ ··· 1623.39u 198.882
0.449788u
59
+ 0.874364u
58
+ ··· 1511.47u 173.851
a
3
=
1.14111u
59
2.35744u
58
+ ··· + 4758.06u + 589.099
0.151779u
59
0.155968u
58
+ ··· 150.729u 40.2437
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.32061u
59
2.83972u
58
+ ··· + 5862.79u + 729.940
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
10
c
3
, c
4
, c
8
c
10
u
60
+ u
59
+ ··· + 3878u + 547
c
6
, c
9
u
60
7u
59
+ ··· + 54036u 6079
c
7
, c
11
, c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
12
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
10
c
3
, c
4
, c
8
c
10
y
60
49y
59
+ ··· + 5849952y + 299209
c
6
, c
9
y
60
+ 27y
59
+ ··· 1424649824y + 36954241
c
7
, c
11
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
12
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.974583 + 0.092136I
a = 0.157749 0.672406I
b = 0.309916 0.549911I
1.64546 + 0.44183I 0
u = 0.974583 0.092136I
a = 0.157749 + 0.672406I
b = 0.309916 + 0.549911I
1.64546 0.44183I 0
u = 0.985032 + 0.280490I
a = 1.90504 1.43106I
b = 1.41878 0.21917I
0.19891 + 4.40083I 0
u = 0.985032 0.280490I
a = 1.90504 + 1.43106I
b = 1.41878 + 0.21917I
0.19891 4.40083I 0
u = 1.052290 + 0.003589I
a = 1.67828 1.88799I
b = 1.41878 0.21917I
6.72233 + 4.40083I 0
u = 1.052290 0.003589I
a = 1.67828 + 1.88799I
b = 1.41878 + 0.21917I
6.72233 4.40083I 0
u = 0.942202 + 0.055227I
a = 0.36140 + 2.10364I
b = 1.21774
6.22930 4.59213I 7.09999 + 3.20482I
u = 0.942202 0.055227I
a = 0.36140 2.10364I
b = 1.21774
6.22930 + 4.59213I 7.09999 3.20482I
u = 0.898064 + 0.266660I
a = 0.82093 + 2.07297I
b = 1.21774
0.42652 1.97241I 2.00000 + 3.68478I
u = 0.898064 0.266660I
a = 0.82093 2.07297I
b = 1.21774
0.42652 + 1.97241I 2.00000 3.68478I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.072370 + 0.111026I
a = 0.745241 + 0.170119I
b = 1.41878 + 0.21917I
2.75782 + 0.19129I 0
u = 1.072370 0.111026I
a = 0.745241 0.170119I
b = 1.41878 0.21917I
2.75782 0.19129I 0
u = 1.095370 + 0.259211I
a = 0.233077 0.935984I
b = 0.309916 0.549911I
1.64546 3.50299I 0
u = 1.095370 0.259211I
a = 0.233077 + 0.935984I
b = 0.309916 + 0.549911I
1.64546 + 3.50299I 0
u = 0.384883 + 0.772449I
a = 1.64885 + 0.61278I
b = 1.41878 0.21917I
3.89801 + 2.42842I 0
u = 0.384883 0.772449I
a = 1.64885 0.61278I
b = 1.41878 + 0.21917I
3.89801 2.42842I 0
u = 0.127271 + 0.791997I
a = 0.011294 0.622453I
b = 0.309916 + 0.549911I
1.64546 + 3.50299I 4.06061 8.11543I
u = 0.127271 0.791997I
a = 0.011294 + 0.622453I
b = 0.309916 0.549911I
1.64546 3.50299I 4.06061 + 8.11543I
u = 0.151080 + 1.188450I
a = 1.84107 0.17810I
b = 1.41878 + 0.21917I
3.89801 6.37324I 0
u = 0.151080 1.188450I
a = 1.84107 + 0.17810I
b = 1.41878 0.21917I
3.89801 + 6.37324I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.209430 + 0.057378I
a = 0.807569 0.455475I
b = 0.309916 0.549911I
5.34455 1.53058I 0
u = 1.209430 0.057378I
a = 0.807569 + 0.455475I
b = 0.309916 + 0.549911I
5.34455 + 1.53058I 0
u = 1.004530 + 0.679945I
a = 1.50731 1.23644I
b = 1.21774
0.42652 1.97241I 0
u = 1.004530 0.679945I
a = 1.50731 + 1.23644I
b = 1.21774
0.42652 + 1.97241I 0
u = 0.346940 + 1.164010I
a = 0.152569 + 0.333032I
b = 0.309916 0.549911I
8.30128 6.12271I 0
u = 0.346940 1.164010I
a = 0.152569 0.333032I
b = 0.309916 + 0.549911I
8.30128 + 6.12271I 0
u = 1.159910 + 0.376539I
a = 0.735375 + 0.972190I
b = 1.41878 + 0.21917I
3.89801 2.42842I 0
u = 1.159910 0.376539I
a = 0.735375 0.972190I
b = 1.41878 0.21917I
3.89801 + 2.42842I 0
u = 1.257970 + 0.394985I
a = 0.442688 + 0.963617I
b = 0.309916 + 0.549911I
8.30128 + 6.12271I 0
u = 1.257970 0.394985I
a = 0.442688 0.963617I
b = 0.309916 0.549911I
8.30128 6.12271I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.316720 + 0.132375I
a = 0.900231 0.667605I
b = 0.309916 0.549911I
12.26580 1.53058I 0
u = 1.316720 0.132375I
a = 0.900231 + 0.667605I
b = 0.309916 + 0.549911I
12.26580 + 1.53058I 0
u = 1.267180 + 0.459289I
a = 0.87588 1.23608I
b = 1.41878 0.21917I
3.89801 + 6.37324I 0
u = 1.267180 0.459289I
a = 0.87588 + 1.23608I
b = 1.41878 + 0.21917I
3.89801 6.37324I 0
u = 0.645770 + 0.020009I
a = 0.173886 + 0.107924I
b = 1.41878 0.21917I
2.75782 0.19129I 3.83682 0.29377I
u = 0.645770 0.020009I
a = 0.173886 0.107924I
b = 1.41878 + 0.21917I
2.75782 + 0.19129I 3.83682 + 0.29377I
u = 1.287540 + 0.440046I
a = 0.049673 + 0.291469I
b = 0.309916 + 0.549911I
8.30128 3.06155I 0
u = 1.287540 0.440046I
a = 0.049673 0.291469I
b = 0.309916 0.549911I
8.30128 + 3.06155I 0
u = 1.349540 + 0.397143I
a = 0.479182 + 0.151695I
b = 0.309916 + 0.549911I
5.34455 + 1.53058I 0
u = 1.349540 0.397143I
a = 0.479182 0.151695I
b = 0.309916 0.549911I
5.34455 1.53058I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.173300 + 0.776333I
a = 1.75422 + 0.67540I
b = 1.41878 + 0.21917I
0.19891 4.40083I 0
u = 1.173300 0.776333I
a = 1.75422 0.67540I
b = 1.41878 0.21917I
0.19891 + 4.40083I 0
u = 1.37357 + 0.47414I
a = 0.93811 + 1.41351I
b = 1.41878 + 0.21917I
2.75782 8.99296I 0
u = 1.37357 0.47414I
a = 0.93811 1.41351I
b = 1.41878 0.21917I
2.75782 + 8.99296I 0
u = 1.51007
a = 0.0164319
b = 1.21774
3.27257 0
u = 1.52601
a = 0.457789
b = 1.21774
10.1938 0
u = 0.02802 + 1.54640I
a = 1.79489 0.01521I
b = 1.41878 0.21917I
2.75782 + 8.99296I 0
u = 0.02802 1.54640I
a = 1.79489 + 0.01521I
b = 1.41878 + 0.21917I
2.75782 8.99296I 0
u = 1.25568 + 1.03399I
a = 1.55111 + 0.70824I
b = 1.21774
6.22930 + 4.59213I 0
u = 1.25568 1.03399I
a = 1.55111 0.70824I
b = 1.21774
6.22930 4.59213I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.099250 + 0.343403I
a = 2.23337 2.40988I
b = 0.309916 0.549911I
8.30128 + 3.06155I 8.06602 + 1.22583I
u = 0.099250 0.343403I
a = 2.23337 + 2.40988I
b = 0.309916 + 0.549911I
8.30128 3.06155I 8.06602 1.22583I
u = 1.61284 + 0.58574I
a = 0.342297 0.081885I
b = 0.309916 0.549911I
12.26580 1.53058I 0
u = 1.61284 0.58574I
a = 0.342297 + 0.081885I
b = 0.309916 + 0.549911I
12.26580 + 1.53058I 0
u = 0.087674 + 0.212302I
a = 2.46392 + 1.97194I
b = 0.309916 0.549911I
1.64546 + 0.44183I 4.06061 + 0.74587I
u = 0.087674 0.212302I
a = 2.46392 1.97194I
b = 0.309916 + 0.549911I
1.64546 0.44183I 4.06061 0.74587I
u = 1.45021 + 1.04440I
a = 1.65442 0.48085I
b = 1.41878 0.21917I
6.72233 + 4.40083I 0
u = 1.45021 1.04440I
a = 1.65442 + 0.48085I
b = 1.41878 + 0.21917I
6.72233 4.40083I 0
u = 1.82688
a = 0.810042
b = 1.21774
3.27257 0
u = 2.19561
a = 1.08248
b = 1.21774
10.1938 0
16
III.
I
u
3
= hu
11
+6u
10
+· · ·+9b10, 8u
11
+9u
10
+· · ·+3a1, u
12
2u
11
+· · ·+u1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
8
3
u
11
3u
10
+ ··· +
16
3
u +
1
3
1
9
u
11
2
3
u
10
+ ··· +
52
9
u +
10
9
a
1
=
23
9
u
11
11
3
u
10
+ ··· +
100
9
u +
13
9
1
9
u
11
2
3
u
10
+ ··· +
52
9
u +
10
9
a
2
=
5
3
u
11
2u
10
+ ··· +
31
3
u +
1
3
17
9
u
11
5
3
u
10
+ ··· +
52
9
u +
19
9
a
10
=
u
2
1
u
11
+ 2u
10
+ ··· 5u 3
a
7
=
8
3
u
11
+ 3u
10
+ ···
16
3
u
1
3
5
3
u
11
4
3
u
10
+ ··· +
13
3
u +
8
3
a
6
=
5
3
u
11
+ 2u
10
+ ···
31
3
u
1
3
2
3
u
11
1
3
u
10
+ ···
14
3
u
1
3
a
11
=
1
0.370370u
11
+ 1.11111u
10
+ ··· 5.74074u 2.62963
a
3
=
u
0.370370u
11
+ 0.111111u
10
+ ··· + 3.25926u + 0.370370
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1394
81
u
11
467
27
u
10
8377
81
u
9
+
8419
81
u
8
+
18214
81
u
7
1840
9
u
6
26111
81
u
5
+
23240
81
u
4
+
22255
81
u
3
25469
81
u
2
+
2491
81
u +
2278
81
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
3(3u
12
+ 6u
11
+ ··· + 2u + 1)
c
3
, c
8
u
12
2u
11
+ ··· + u 1
c
4
, c
10
u
12
+ 2u
11
+ ··· u 1
c
5
3(3u
12
6u
11
+ ··· 2u + 1)
c
6
, c
9
u
12
+ u
11
+ ··· + 3u 3
c
7
3(3u
12
+ 3u
11
+ ··· + u 1)
c
11
, c
12
3(3u
12
3u
11
+ ··· u 1)
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
9(9y
12
138y
11
+ ··· 10y + 1)
c
3
, c
4
, c
8
c
10
y
12
14y
11
+ ··· 39y + 1
c
6
, c
9
y
12
+ 3y
11
+ ··· 165y + 9
c
7
, c
11
, c
12
9(9y
12
129y
11
+ ··· 5y + 1)
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.932006 + 0.551595I
a = 1.94798 + 1.16375I
b = 1.378330 + 0.226018I
1.23298 4.56667I 0.57839 + 5.34211I
u = 0.932006 0.551595I
a = 1.94798 1.16375I
b = 1.378330 0.226018I
1.23298 + 4.56667I 0.57839 5.34211I
u = 1.012880 + 0.538063I
a = 0.913750 0.403762I
b = 0.084384 0.404586I
8.91282 4.41756I 11.80744 + 3.92940I
u = 1.012880 0.538063I
a = 0.913750 + 0.403762I
b = 0.084384 + 0.404586I
8.91282 + 4.41756I 11.80744 3.92940I
u = 0.982710 + 0.822426I
a = 2.32770 0.87516I
b = 1.376400 0.141519I
4.45821 + 6.27261I 4.06543 5.44516I
u = 0.982710 0.822426I
a = 2.32770 + 0.87516I
b = 1.376400 + 0.141519I
4.45821 6.27261I 4.06543 + 5.44516I
u = 1.38593
a = 0.540766
b = 0.849230
4.82166 10.3490
u = 1.59916
a = 0.745784
b = 0.340870
12.3887 13.0030
u = 1.66692
a = 0.445586
b = 1.24424
2.73363 6.28030
u = 0.267125
a = 0.380081
b = 1.63102
7.68547 20.1110
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215477
a = 3.17648
b = 0.685186
0.526513 4.89240
u = 1.85614
a = 0.435151
b = 1.29805
8.99699 2.34230
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
9(u
6
u
5
+ ··· + u 1)
10
(3u
12
+ 6u
11
+ ··· + 2u + 1)
· (3u
23
+ 39u
22
+ ··· + 48u 32)
c
3
, c
8
(u
12
2u
11
+ ··· + u 1)(u
23
4u
22
+ ··· + 3u 1)
· (u
60
+ u
59
+ ··· + 3878u + 547)
c
4
, c
10
(u
12
+ 2u
11
+ ··· u 1)(u
23
4u
22
+ ··· + 3u 1)
· (u
60
+ u
59
+ ··· + 3878u + 547)
c
5
9(u
6
u
5
+ ··· + u 1)
10
(3u
12
6u
11
+ ··· 2u + 1)
· (3u
23
+ 39u
22
+ ··· + 48u 32)
c
6
, c
9
(u
12
+ u
11
+ ··· + 3u 3)(u
23
+ u
22
+ ··· + 39u + 3)
· (u
60
7u
59
+ ··· + 54036u 6079)
c
7
9(u
5
u
4
+ ··· + u + 1)
12
(3u
12
+ 3u
11
+ ··· + u 1)
· (3u
23
+ 42u
22
+ ··· + 160u + 64)
c
11
, c
12
9(u
5
u
4
+ ··· + u + 1)
12
(3u
12
3u
11
+ ··· u 1)
· (3u
23
+ 42u
22
+ ··· + 160u + 64)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
81(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
10
· (9y
12
138y
11
+ ··· 10y + 1)(9y
23
261y
22
+ ··· 256y 1024)
c
3
, c
4
, c
8
c
10
(y
12
14y
11
+ ··· 39y + 1)(y
23
14y
22
+ ··· + 3y 1)
· (y
60
49y
59
+ ··· + 5849952y + 299209)
c
6
, c
9
(y
12
+ 3y
11
+ ··· 165y + 9)(y
23
+ 3y
22
+ ··· + 1557y 9)
· (y
60
+ 27y
59
+ ··· 1424649824y + 36954241)
c
7
, c
11
, c
12
81(y
5
5y
4
+ ··· y 1)
12
(9y
12
129y
11
+ ··· 5y + 1)
· (9y
23
234y
22
+ ··· + 54272y 4096)
23