10
121
(K10a
90
)
A knot diagram
1
Linearized knot diagam
6 5 1 8 9 4 10 2 3 7
Solving Sequence
2,5 3,9
6 10 1 8 4 7
c
2
c
5
c
9
c
1
c
8
c
4
c
7
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1260218947u
22
19109508090u
21
+ ··· + 984316106b + 5089661734,
2544830867u
22
38196855978u
21
+ ··· + 1968632212a + 17497959996,
u
23
+ 16u
22
+ ··· 10u 4i
I
u
2
= h111u
10
a
3
+ 343u
10
a
2
+ ··· 317a 203, u
10
a
3
+ 5u
10
a
2
+ ··· + 9a
2
+ 12,
u
11
5u
10
+ 12u
9
15u
8
+ 8u
7
+ 4u
6
8u
5
+ 3u
4
+ 3u
3
3u
2
+ 1i
I
u
3
= hu
9
5u
8
+ 11u
7
12u
6
+ 5u
5
+ 3u
4
5u
3
+ 3u
2
+ b + u 2,
2u
9
9u
8
+ 19u
7
21u
6
+ 12u
5
u
4
3u
3
+ 3u
2
+ a + u 1,
u
10
5u
9
+ 12u
8
16u
7
+ 12u
6
3u
5
3u
4
+ 4u
3
u
2
u + 1i
* 3 irreducible components of dim
C
= 0, with total 77 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.26 × 10
9
u
22
1.91 × 10
10
u
21
+ · · · + 9.84× 10
8
b + 5.09 ×10
9
, 2.54 ×
10
9
u
22
3.82×10
10
u
21
+· · ·+1.97×10
9
a+1.75×10
10
, u
23
+16u
22
+· · ·−10u4i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
9
=
1.29269u
22
+ 19.4027u
21
+ ··· 9.50831u 8.88838
1.28030u
22
+ 19.4140u
21
+ ··· 4.03851u 5.17076
a
6
=
0.319249u
22
+ 5.03061u
21
+ ··· + 6.76619u 4.03209
0.0773747u
22
+ 0.861665u
21
+ ··· + 1.83960u 1.27700
a
10
=
1.08318u
22
+ 16.7864u
21
+ ··· 13.1020u 8.83882
0.0242790u
22
0.125186u
21
+ ··· + 2.48170u 2.22746
a
1
=
1.02071u
22
+ 13.6913u
21
+ ··· 4.25396u + 6.74097
2.26372u
22
+ 33.8581u
21
+ ··· 16.4513u 3.77333
a
8
=
0.0123908u
22
0.0112566u
21
+ ··· 5.46979u 3.71763
1.28030u
22
+ 19.4140u
21
+ ··· 4.03851u 5.17076
a
4
=
0.540830u
22
+ 8.50923u
21
+ ··· + 5.59024u 1.78760
0.298956u
22
4.34029u
21
+ ··· + 1.33635u 0.967496
a
7
=
0.221415u
22
3.51881u
21
+ ··· 1.62252u 3.99396
0.519049u
22
+ 7.71688u
21
+ ··· + 1.74955u 3.39079
(ii) Obstruction class = 1
(iii) Cusp Shap es =
3396085143
492158053
u
22
53190862554
492158053
u
21
+ ··· +
29461471174
492158053
u +
13339530290
492158053
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
19u
22
+ ··· 18432u + 2048
c
2
u
23
16u
22
+ ··· 10u + 4
c
3
, c
6
u
23
+ u
22
+ ··· + 2u + 1
c
4
, c
9
u
23
+ u
22
+ ··· + u + 1
c
5
, c
8
u
23
u
22
+ ··· + 2u + 1
c
7
, c
10
u
23
10u
22
+ ··· 108u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
+ 9y
22
+ ··· + 2097152y 4194304
c
2
y
23
2y
22
+ ··· + 252y 16
c
3
, c
6
y
23
+ 9y
22
+ ··· 16y 1
c
4
, c
9
y
23
7y
22
+ ··· y 1
c
5
, c
8
y
23
3y
22
+ ··· + 6y 1
c
7
, c
10
y
23
+ 16y
22
+ ··· 1360y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.799030 + 0.571303I
a = 0.12013 1.57743I
b = 0.99718 1.19178I
1.35281 + 4.50771I 12.5679 8.0453I
u = 0.799030 0.571303I
a = 0.12013 + 1.57743I
b = 0.99718 + 1.19178I
1.35281 4.50771I 12.5679 + 8.0453I
u = 0.924432
a = 0.417135
b = 0.385613
1.38648 7.37670
u = 0.517217 + 1.045830I
a = 0.047708 + 0.890847I
b = 0.906994 + 0.510655I
6.24675 0.93599I 3.26085 + 0.04991I
u = 0.517217 1.045830I
a = 0.047708 0.890847I
b = 0.906994 0.510655I
6.24675 + 0.93599I 3.26085 0.04991I
u = 1.119710 + 0.513718I
a = 0.452909 0.773390I
b = 0.904431 0.633306I
0.95729 + 2.04351I 2.51837 2.36281I
u = 1.119710 0.513718I
a = 0.452909 + 0.773390I
b = 0.904431 + 0.633306I
0.95729 2.04351I 2.51837 + 2.36281I
u = 0.587912 + 0.172198I
a = 0.88228 1.27862I
b = 0.738880 0.599789I
1.10859 + 1.69807I 0.99491 2.62569I
u = 0.587912 0.172198I
a = 0.88228 + 1.27862I
b = 0.738880 + 0.599789I
1.10859 1.69807I 0.99491 + 2.62569I
u = 0.267486 + 0.510215I
a = 0.57156 1.32428I
b = 0.828550 + 0.062607I
2.14619 2.15516I 1.26567 + 4.32711I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.267486 0.510215I
a = 0.57156 + 1.32428I
b = 0.828550 0.062607I
2.14619 + 2.15516I 1.26567 4.32711I
u = 1.14560 + 0.90839I
a = 0.060381 + 1.065800I
b = 1.03734 + 1.16613I
4.47926 + 10.82160I 7.18200 7.95225I
u = 1.14560 0.90839I
a = 0.060381 1.065800I
b = 1.03734 1.16613I
4.47926 10.82160I 7.18200 + 7.95225I
u = 1.14496 + 1.09496I
a = 0.038158 1.004390I
b = 1.05609 1.19178I
0.6004 + 16.9749I 0. 9.34400I
u = 1.14496 1.09496I
a = 0.038158 + 1.004390I
b = 1.05609 + 1.19178I
0.6004 16.9749I 0. + 9.34400I
u = 0.257593 + 0.139438I
a = 3.87302 + 0.15811I
b = 1.019710 + 0.499316I
1.57996 + 1.95049I 0.00371 3.34610I
u = 0.257593 0.139438I
a = 3.87302 0.15811I
b = 1.019710 0.499316I
1.57996 1.95049I 0.00371 + 3.34610I
u = 1.37621 + 1.06752I
a = 0.189943 + 0.547859I
b = 0.846254 + 0.551200I
3.21418 + 8.47524I 0
u = 1.37621 1.06752I
a = 0.189943 0.547859I
b = 0.846254 0.551200I
3.21418 8.47524I 0
u = 0.84300 + 1.61883I
a = 0.299587 0.003010I
b = 0.247680 0.487517I
2.90076 2.91786I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.84300 1.61883I
a = 0.299587 + 0.003010I
b = 0.247680 + 0.487517I
2.90076 + 2.91786I 0
u = 1.45365 + 1.27820I
a = 0.325009 + 0.193081I
b = 0.225654 + 0.696100I
0.52992 8.08521I 0
u = 1.45365 1.27820I
a = 0.325009 0.193081I
b = 0.225654 0.696100I
0.52992 + 8.08521I 0
7
II. I
u
2
= h111u
10
a
3
+ 343u
10
a
2
+ · · · 317a 203, u
10
a
3
+ 5u
10
a
2
+ · · · +
9a
2
+ 12, u
11
5u
10
+ · · · 3u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
9
=
a
0.350158a
3
u
10
1.08202a
2
u
10
+ ··· + a + 0.640379
a
6
=
a
2
u
0.0820189a
3
u
10
+ 0.350158a
2
u
10
+ ··· a + 0.996845
a
10
=
0.350158a
3
u
10
+ 1.08202a
2
u
10
+ ··· 1.04101a
2
0.640379
0.0504732a
3
u
10
0.753943a
2
u
10
+ ··· + 0.876972a
2
+ 0.0788644
a
1
=
0.0410095a
3
u
10
0.675079a
2
u
10
+ ··· + a + 0.501577
0.0820189a
3
u
10
+ 0.350158a
2
u
10
+ ··· a 0.00315457
a
8
=
0.350158a
3
u
10
+ 1.08202a
2
u
10
+ ··· 1.04101a
2
0.640379
0.350158a
3
u
10
1.08202a
2
u
10
+ ··· + a + 0.640379
a
4
=
0.328076a
3
u
10
+ 0.400631a
2
u
10
+ ··· a 0.0126183
0.410095a
3
u
10
0.750789a
2
u
10
+ ··· + 2a 0.984227
a
7
=
0.451104a
3
u
10
+ 0.425868a
2
u
10
+ ··· 0.712934a
2
+ 0.482650
0.246057a
3
u
10
1.05047a
2
u
10
+ ··· + 2a + 0.00946372
(ii) Obstruction class = 1
(iii) Cusp Shapes =
104
317
u
10
a
3
444
317
u
10
a
2
+ ··· + 4a
6970
317
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)
22
c
2
(u
11
+ 5u
10
+ 12u
9
+ 15u
8
+ 8u
7
4u
6
8u
5
3u
4
+ 3u
3
+ 3u
2
1)
4
c
3
, c
6
u
44
+ u
43
+ ··· 8u + 1
c
4
, c
9
u
44
u
43
+ ··· 918u + 289
c
5
, c
8
u
44
3u
43
+ ··· + 14u + 1
c
7
, c
10
(u
11
+ 3u
10
+ ··· + 2u + 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
22
c
2
(y
11
y
10
+ ··· + 6y 1)
4
c
3
, c
6
y
44
9y
43
+ ··· 8y + 1
c
4
, c
9
y
44
13y
43
+ ··· 899368y + 83521
c
5
, c
8
y
44
+ 15y
43
+ ··· 56y + 1
c
7
, c
10
(y
11
+ 7y
10
+ ··· 6y 1)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.326966 + 0.916688I
a = 0.038498 1.048450I
b = 0.80389 1.55903I
2.98579 7.03062I 1.84059 + 9.69161I
u = 0.326966 + 0.916688I
a = 0.281007 1.284950I
b = 0.1356230 + 0.0379857I
2.98579 2.97085I 1.84059 + 2.76341I
u = 0.326966 + 0.916688I
a = 1.23128 + 1.31612I
b = 0.948517 + 0.378099I
2.98579 7.03062I 1.84059 + 9.69161I
u = 0.326966 + 0.916688I
a = 0.083576 + 0.118139I
b = 1.086020 + 0.677732I
2.98579 2.97085I 1.84059 + 2.76341I
u = 0.326966 0.916688I
a = 0.038498 + 1.048450I
b = 0.80389 + 1.55903I
2.98579 + 7.03062I 1.84059 9.69161I
u = 0.326966 0.916688I
a = 0.281007 + 1.284950I
b = 0.1356230 0.0379857I
2.98579 + 2.97085I 1.84059 2.76341I
u = 0.326966 0.916688I
a = 1.23128 1.31612I
b = 0.948517 0.378099I
2.98579 + 7.03062I 1.84059 9.69161I
u = 0.326966 0.916688I
a = 0.083576 0.118139I
b = 1.086020 0.677732I
2.98579 + 2.97085I 1.84059 2.76341I
u = 0.864248 + 0.407709I
a = 0.129704 + 0.797794I
b = 1.09220 + 1.32253I
2.06894 4.27767I 9.63582 + 8.52770I
u = 0.864248 + 0.407709I
a = 1.193510 0.275075I
b = 0.002110 0.500193I
2.06894 0.21790I 9.63582 + 1.59949I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.864248 + 0.407709I
a = 0.221332 + 0.474348I
b = 0.919334 + 0.724336I
2.06894 0.21790I 9.63582 + 1.59949I
u = 0.864248 + 0.407709I
a = 0.44322 1.73936I
b = 0.437365 0.636610I
2.06894 4.27767I 9.63582 + 8.52770I
u = 0.864248 0.407709I
a = 0.129704 0.797794I
b = 1.09220 1.32253I
2.06894 + 4.27767I 9.63582 8.52770I
u = 0.864248 0.407709I
a = 1.193510 + 0.275075I
b = 0.002110 + 0.500193I
2.06894 + 0.21790I 9.63582 1.59949I
u = 0.864248 0.407709I
a = 0.221332 0.474348I
b = 0.919334 0.724336I
2.06894 + 0.21790I 9.63582 1.59949I
u = 0.864248 0.407709I
a = 0.44322 + 1.73936I
b = 0.437365 + 0.636610I
2.06894 + 4.27767I 9.63582 8.52770I
u = 0.577598 + 0.283449I
a = 0.081013 + 0.913235I
b = 1.57832 + 1.34962I
0.11530 + 7.95431I 9.1705 13.4876I
u = 0.577598 + 0.283449I
a = 0.76538 1.71451I
b = 0.918479 0.926010I
0.11530 + 3.89454I 9.17045 6.55945I
u = 0.577598 + 0.283449I
a = 0.64749 1.92095I
b = 0.043897 1.207240I
0.11530 + 3.89454I 9.17045 6.55945I
u = 0.577598 + 0.283449I
a = 3.12633 + 0.80240I
b = 0.212063 + 0.550445I
0.11530 + 7.95431I 9.1705 13.4876I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.577598 0.283449I
a = 0.081013 0.913235I
b = 1.57832 1.34962I
0.11530 7.95431I 9.1705 + 13.4876I
u = 0.577598 0.283449I
a = 0.76538 + 1.71451I
b = 0.918479 + 0.926010I
0.11530 3.89454I 9.17045 + 6.55945I
u = 0.577598 0.283449I
a = 0.64749 + 1.92095I
b = 0.043897 + 1.207240I
0.11530 3.89454I 9.17045 + 6.55945I
u = 0.577598 0.283449I
a = 3.12633 0.80240I
b = 0.212063 0.550445I
0.11530 7.95431I 9.1705 + 13.4876I
u = 1.110200 + 0.862988I
a = 0.028627 1.133370I
b = 0.596743 0.983192I
2.44783 4.73429I 9.46762 + 3.38077I
u = 1.110200 + 0.862988I
a = 0.094059 + 0.812487I
b = 1.00987 + 1.23356I
2.44783 4.73429I 9.46762 + 3.38077I
u = 1.110200 + 0.862988I
a = 0.521303 0.385563I
b = 0.177376 0.645337I
2.44783 0.67452I 9.46762 3.54743I
u = 1.110200 + 0.862988I
a = 0.182065 + 0.439757I
b = 0.246013 + 0.877929I
2.44783 0.67452I 9.46762 3.54743I
u = 1.110200 0.862988I
a = 0.028627 + 1.133370I
b = 0.596743 + 0.983192I
2.44783 + 4.73429I 9.46762 3.38077I
u = 1.110200 0.862988I
a = 0.094059 0.812487I
b = 1.00987 1.23356I
2.44783 + 4.73429I 9.46762 3.38077I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.110200 0.862988I
a = 0.521303 + 0.385563I
b = 0.177376 + 0.645337I
2.44783 + 0.67452I 9.46762 + 3.54743I
u = 1.110200 0.862988I
a = 0.182065 0.439757I
b = 0.246013 0.877929I
2.44783 + 0.67452I 9.46762 + 3.54743I
u = 0.566454
a = 0.061706 + 1.273110I
b = 1.26958 + 1.41728I
4.02369 2.02988I 18.2613 + 3.4641I
u = 0.566454
a = 0.061706 1.273110I
b = 1.26958 1.41728I
4.02369 + 2.02988I 18.2613 3.4641I
u = 0.566454
a = 2.24127 + 2.50202I
b = 0.034953 + 0.721156I
4.02369 2.02988I 18.2613 + 3.4641I
u = 0.566454
a = 2.24127 2.50202I
b = 0.034953 0.721156I
4.02369 + 2.02988I 18.2613 3.4641I
u = 1.05941 + 1.17096I
a = 0.014454 + 0.953147I
b = 0.651229 + 1.243080I
1.50728 7.24617I 6.43603 + 12.47688I
u = 1.05941 + 1.17096I
a = 0.307069 0.833969I
b = 1.10078 1.02670I
1.50728 7.24617I 6.43603 + 12.47688I
u = 1.05941 + 1.17096I
a = 0.426989 + 0.526407I
b = 0.201428 + 0.560153I
1.50728 3.18641I 6.43603 + 5.54868I
u = 1.05941 + 1.17096I
a = 0.177470 0.332583I
b = 0.164043 1.057670I
1.50728 3.18641I 6.43603 + 5.54868I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.05941 1.17096I
a = 0.014454 0.953147I
b = 0.651229 1.243080I
1.50728 + 7.24617I 6.43603 12.47688I
u = 1.05941 1.17096I
a = 0.307069 + 0.833969I
b = 1.10078 + 1.02670I
1.50728 + 7.24617I 6.43603 12.47688I
u = 1.05941 1.17096I
a = 0.426989 0.526407I
b = 0.201428 0.560153I
1.50728 + 3.18641I 6.43603 5.54868I
u = 1.05941 1.17096I
a = 0.177470 + 0.332583I
b = 0.164043 + 1.057670I
1.50728 + 3.18641I 6.43603 5.54868I
15
III.
I
u
3
= hu
9
5u
8
+ · · · + b 2, 2u
9
9u
8
+ · · · + a 1, u
10
5u
9
+ · · · u + 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
9
=
2u
9
+ 9u
8
19u
7
+ 21u
6
12u
5
+ u
4
+ 3u
3
3u
2
u + 1
u
9
+ 5u
8
11u
7
+ 12u
6
5u
5
3u
4
+ 5u
3
3u
2
u + 2
a
6
=
u
9
+ 3u
8
4u
7
+ u
6
+ u
5
2u
3
+ u
2
2u 1
2u
9
+ 8u
8
15u
7
+ 13u
6
3u
5
5u
4
+ 5u
3
3u
2
u + 1
a
10
=
u
9
+ 5u
8
12u
7
+ 16u
6
13u
5
+ 6u
4
u
3
2u
2
+ u
u
9
+ 4u
8
8u
7
+ 8u
6
3u
5
3u
4
+ 4u
3
2u
2
u + 1
a
1
=
4u
9
18u
8
+ 38u
7
42u
6
+ 23u
5
9u
3
+ 8u
2
+ u 3
u
8
+ 3u
7
4u
6
+ u
5
+ 2u
4
3u
3
+ 2u
2
u 2
a
8
=
u
9
+ 4u
8
8u
7
+ 9u
6
7u
5
+ 4u
4
2u
3
1
u
9
+ 5u
8
11u
7
+ 12u
6
5u
5
3u
4
+ 5u
3
3u
2
u + 2
a
4
=
u
9
4u
8
+ 7u
7
4u
6
4u
5
+ 9u
4
7u
3
+ 3u
2
+ u 1
u
8
+ 4u
7
8u
6
+ 8u
5
4u
4
+ u
2
1
a
7
=
u
9
+ 3u
8
4u
7
+ u
6
+ 2u
5
3u
4
+ 2u
3
2u
2
2
u
9
+ 4u
8
7u
7
+ 5u
6
3u
4
+ 2u
3
u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14u
9
60u
8
+ 124u
7
133u
6
+ 74u
5
2u
4
25u
3
+ 27u
2
+ 6u 16
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 4u
8
u
7
+ 6u
6
3u
5
+ 6u
4
3u
3
+ 4u
2
2u + 1
c
2
u
10
5u
9
+ 12u
8
16u
7
+ 12u
6
3u
5
3u
4
+ 4u
3
u
2
u + 1
c
3
, c
6
u
10
+ 3u
9
+ 3u
8
u
7
u
6
+ 7u
5
+ 11u
4
+ 3u
3
3u
2
u + 1
c
4
, c
9
u
10
+ u
9
u
8
2u
7
+ 3u
6
2u
4
u
3
+ 5u
2
4u + 1
c
5
, c
8
u
10
+ u
9
+ 3u
8
+ 2u
7
+ 7u
6
+ 5u
5
+ 8u
4
+ 4u
3
+ 4u
2
+ u + 1
c
7
u
10
3u
9
+ 9u
8
16u
7
+ 24u
6
27u
5
+ 24u
4
18u
3
+ 10u
2
4u + 1
c
10
u
10
+ 3u
9
+ 9u
8
+ 16u
7
+ 24u
6
+ 27u
5
+ 24u
4
+ 18u
3
+ 10u
2
+ 4u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 8y
9
+ ··· + 4y + 1
c
2
y
10
y
9
+ 8y
8
4y
7
+ 14y
6
+ 15y
5
+ y
4
+ 8y
3
+ 3y
2
3y + 1
c
3
, c
6
y
10
3y
9
+ ··· 7y + 1
c
4
, c
9
y
10
3y
9
+ ··· 6y + 1
c
5
, c
8
y
10
+ 5y
9
+ ··· + 7y + 1
c
7
, c
10
y
10
+ 9y
9
+ 33y
8
+ 62y
7
+ 56y
6
+ 5y
5
26y
4
12y
3
+ 4y
2
+ 4y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.689571 + 0.575966I
a = 0.12950 1.62825I
b = 0.84852 1.19738I
0.99844 4.62197I 7.4943 + 13.1842I
u = 0.689571 0.575966I
a = 0.12950 + 1.62825I
b = 0.84852 + 1.19738I
0.99844 + 4.62197I 7.4943 13.1842I
u = 0.117471 + 0.884570I
a = 0.748660 + 0.130004I
b = 0.202944 0.646971I
2.84633 2.07393I 9.25779 + 2.43239I
u = 0.117471 0.884570I
a = 0.748660 0.130004I
b = 0.202944 + 0.646971I
2.84633 + 2.07393I 9.25779 2.43239I
u = 1.171940 + 0.674004I
a = 0.240799 0.606453I
b = 0.126549 0.873027I
2.30790 1.97177I 10.18714 + 3.25987I
u = 1.171940 0.674004I
a = 0.240799 + 0.606453I
b = 0.126549 + 0.873027I
2.30790 + 1.97177I 10.18714 3.25987I
u = 0.561171 + 0.194255I
a = 0.531466 1.276610I
b = 0.546232 + 0.613157I
0.66134 7.13925I 2.98492 + 4.64046I
u = 0.561171 0.194255I
a = 0.531466 + 1.276610I
b = 0.546232 0.613157I
0.66134 + 7.13925I 2.98492 4.64046I
u = 1.08219 + 1.11471I
a = 0.150423 + 0.880176I
b = 0.818356 + 1.120190I
1.44035 6.19794I 4.57589 + 3.75444I
u = 1.08219 1.11471I
a = 0.150423 0.880176I
b = 0.818356 1.120190I
1.44035 + 6.19794I 4.57589 3.75444I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
22
)(u
10
+ 4u
8
+ ··· 2u + 1)
· (u
23
19u
22
+ ··· 18432u + 2048)
c
2
(u
10
5u
9
+ 12u
8
16u
7
+ 12u
6
3u
5
3u
4
+ 4u
3
u
2
u + 1)
· (u
11
+ 5u
10
+ 12u
9
+ 15u
8
+ 8u
7
4u
6
8u
5
3u
4
+ 3u
3
+ 3u
2
1)
4
· (u
23
16u
22
+ ··· 10u + 4)
c
3
, c
6
(u
10
+ 3u
9
+ 3u
8
u
7
u
6
+ 7u
5
+ 11u
4
+ 3u
3
3u
2
u + 1)
· (u
23
+ u
22
+ ··· + 2u + 1)(u
44
+ u
43
+ ··· 8u + 1)
c
4
, c
9
(u
10
+ u
9
u
8
2u
7
+ 3u
6
2u
4
u
3
+ 5u
2
4u + 1)
· (u
23
+ u
22
+ ··· + u + 1)(u
44
u
43
+ ··· 918u + 289)
c
5
, c
8
(u
10
+ u
9
+ 3u
8
+ 2u
7
+ 7u
6
+ 5u
5
+ 8u
4
+ 4u
3
+ 4u
2
+ u + 1)
· (u
23
u
22
+ ··· + 2u + 1)(u
44
3u
43
+ ··· + 14u + 1)
c
7
(u
10
3u
9
+ 9u
8
16u
7
+ 24u
6
27u
5
+ 24u
4
18u
3
+ 10u
2
4u + 1)
· ((u
11
+ 3u
10
+ ··· + 2u + 1)
4
)(u
23
10u
22
+ ··· 108u + 16)
c
10
(u
10
+ 3u
9
+ 9u
8
+ 16u
7
+ 24u
6
+ 27u
5
+ 24u
4
+ 18u
3
+ 10u
2
+ 4u + 1)
· ((u
11
+ 3u
10
+ ··· + 2u + 1)
4
)(u
23
10u
22
+ ··· 108u + 16)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
22
)(y
10
+ 8y
9
+ ··· + 4y + 1)
· (y
23
+ 9y
22
+ ··· + 2097152y 4194304)
c
2
(y
10
y
9
+ 8y
8
4y
7
+ 14y
6
+ 15y
5
+ y
4
+ 8y
3
+ 3y
2
3y + 1)
· ((y
11
y
10
+ ··· + 6y 1)
4
)(y
23
2y
22
+ ··· + 252y 16)
c
3
, c
6
(y
10
3y
9
+ ··· 7y + 1)(y
23
+ 9y
22
+ ··· 16y 1)
· (y
44
9y
43
+ ··· 8y + 1)
c
4
, c
9
(y
10
3y
9
+ ··· 6y + 1)(y
23
7y
22
+ ··· y 1)
· (y
44
13y
43
+ ··· 899368y + 83521)
c
5
, c
8
(y
10
+ 5y
9
+ ··· + 7y + 1)(y
23
3y
22
+ ··· + 6y 1)
· (y
44
+ 15y
43
+ ··· 56y + 1)
c
7
, c
10
(y
10
+ 9y
9
+ 33y
8
+ 62y
7
+ 56y
6
+ 5y
5
26y
4
12y
3
+ 4y
2
+ 4y + 1)
· ((y
11
+ 7y
10
+ ··· 6y 1)
4
)(y
23
+ 16y
22
+ ··· 1360y 256)
21