10
122
(K10a
89
)
A knot diagram
1
Linearized knot diagam
5 6 7 9 8 10 1 2 4 3
Solving Sequence
3,7 4,10
1 8 6 2 5 9
c
3
c
10
c
7
c
6
c
2
c
5
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
4
u
3
4u
2
+ 6b + u + 3, a + 1, u
5
+ u
4
+ u
3
u
2
+ 3u + 3i
I
u
2
= hu
9
3u
8
+ 2u
7
u
6
u
5
8u
4
+ u
3
5u
2
+ 4b u + 3, a + 1, u
10
+ u
8
+ u
7
+ 4u
6
+ u
5
+ u
4
2u
3
+ 1i
I
u
3
= h1.44071 × 10
22
u
23
+ 2.00575 × 10
22
u
22
+ ··· + 8.55063 × 10
22
b + 4.63180 × 10
23
,
6.78118 × 10
27
u
23
+ 1.02960 × 10
28
u
22
+ ··· + 1.85674 × 10
28
a + 3.22471 × 10
29
, u
24
+ u
23
+ ··· 26u + 67i
I
u
4
= h118u
11
136u
10
+ ··· + 209b 456, 142u
11
116u
10
+ ··· + 209a 90,
u
12
u
11
+ 2u
10
+ u
9
+ 2u
8
9u
7
+ 3u
6
+ 3u
5
+ 2u
4
8u
3
+ 8u
2
4u + 1i
I
u
5
= hu
5
+ 2u
4
4u
3
+ u
2
+ 12b + 5u + 3, a + 1, u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3i
I
u
6
= hb + u + 1, a + 1, u
2
+ u + 1i
I
u
7
= hb 1, 3u
5
4u
4
6u
3
+ 6u
2
+ a 7u + 1, u
6
+ u
5
+ 2u
4
2u
3
+ 4u
2
2u + 1i
I
u
8
= hb, a + 1, u
3
u
2
+ 1i
* 8 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
4
u
3
4u
2
+ 6b + u + 3, a + 1, u
5
+ u
4
+ u
3
u
2
+ 3u + 3i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
1
6
u
4
+
1
6
u
3
+ ···
1
6
u
1
2
a
1
=
1
6
u
4
1
6
u
3
+ ··· +
1
6
u
1
2
1
6
u
4
+
1
6
u
3
+ ···
1
6
u
1
2
a
8
=
1
3
u
4
+
1
3
u
3
+
1
3
u
2
+
2
3
u + 1
1
3
u
4
5
6
u
3
+ ··· +
1
3
u
1
2
a
6
=
u
1
2
u
3
1
2
a
2
=
1
2
u
4
1
2
u + 1
u
2
1
a
5
=
1
6
u
4
1
6
u
3
+ ··· +
1
2
u +
5
6
1
2
u
4
2
3
u
3
+ ···
7
6
u
4
3
a
9
=
1
6
u
4
1
6
u
3
+ ··· +
1
6
u
1
2
1
3
u
4
+
1
6
u
3
+ ···
2
3
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
9
u
4
7
9
u
3
28
9
u
2
35
9
u + 7
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
5
u
4
+ u
3
+ u
2
+ 3u 3
c
2
, c
7
u
5
3u
3
+ 7u 4
c
4
, c
9
3(3u
5
12u
4
+ 26u
3
36u
2
+ 28u 8)
c
5
, c
10
3(3u
5
15u
4
+ 35u
3
41u
2
+ 23u 1)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
5
+ y
4
+ 9y
3
y
2
+ 15y 9
c
2
, c
7
y
5
6y
4
+ 23y
3
42y
2
+ 49y 16
c
4
, c
9
9(9y
5
+ 12y
4
20y
3
32y
2
+ 208y 64)
c
5
, c
10
9(9y
5
15y
4
+ 133y
3
101y
2
+ 447y 1)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.860145 + 0.891716I
a = 1.00000
b = 1.30783 + 1.05747I
1.64634 + 10.42060I 0.48885 9.54868I
u = 0.860145 0.891716I
a = 1.00000
b = 1.30783 1.05747I
1.64634 10.42060I 0.48885 + 9.54868I
u = 0.724026
a = 1.00000
b = 0.0473103
1.11365 8.99900
u = 0.99813 + 1.30502I
a = 1.00000
b = 1.16851 1.06085I
7.9576 16.4108I 1.98837 + 8.68093I
u = 0.99813 1.30502I
a = 1.00000
b = 1.16851 + 1.06085I
7.9576 + 16.4108I 1.98837 8.68093I
5
II.
I
u
2
= hu
9
3u
8
+ · · · + 4b + 3, a + 1, u
10
+ u
8
+ u
7
+ 4u
6
+ u
5
+ u
4
2u
3
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
1
4
u
9
+
3
4
u
8
+ ··· +
1
4
u
3
4
a
1
=
1
4
u
9
3
4
u
8
+ ···
1
4
u
1
4
1
4
u
9
+
3
4
u
8
+ ··· +
1
4
u
3
4
a
8
=
3
4
u
9
3
4
u
8
+ ··· +
5
4
u +
3
4
3
2
u
9
+ u
8
+ ···
1
2
u 1
a
6
=
u
3
4
u
9
1
4
u
8
+ ··· +
1
4
u +
1
4
a
2
=
1
4
u
9
1
4
u
8
+ ··· +
1
4
u +
1
4
3
4
u
9
1
4
u
8
+ ··· +
3
4
u
3
4
a
5
=
3
2
u
9
u
8
+ ··· +
1
2
u + 1
5
4
u
9
+
3
4
u
8
+ ··· +
5
4
u
7
4
a
9
=
1
4
u
9
3
4
u
8
+ ···
1
4
u
1
4
1
2
u
9
+
1
2
u
8
+ ··· +
1
2
u
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
9
+
5
4
u
8
5
2
u
7
+
5
4
u
6
+
11
4
u
5
9
4
u
3
+
15
4
u
2
+
25
4
u +
7
4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
10
+ u
8
u
7
+ 4u
6
u
5
+ u
4
+ 2u
3
+ 1
c
2
, c
7
(u
5
u
4
+ 1)
2
c
4
, c
9
(u
5
4u
4
+ 9u
3
13u
2
+ 10u 4)
2
c
5
, c
10
u
10
10u
9
+ ··· 95u + 19
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
10
+ 2y
9
+ 9y
8
+ 9y
7
+ 16y
6
+ 13y
5
+ 7y
4
+ 4y
3
+ 2y
2
+ 1
c
2
, c
7
(y
5
y
4
+ 2y
2
1)
2
c
4
, c
9
(y
5
+ 2y
4
3y
3
21y
2
4y 16)
2
c
5
, c
10
y
10
4y
9
+ ··· + 361y + 361
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.186488 + 0.884166I
a = 1.00000
b = 1.29181 + 1.28122I
7.58413 7.68015I 6.00758 + 6.55636I
u = 0.186488 0.884166I
a = 1.00000
b = 1.29181 1.28122I
7.58413 + 7.68015I 6.00758 6.55636I
u = 0.583652 + 0.627090I
a = 1.00000
b = 1.68130 0.73200I
1.88219 6 1.264578 + 0.10I
u = 0.583652 0.627090I
a = 1.00000
b = 1.68130 + 0.73200I
1.88219 6 1.264578 + 0.10I
u = 0.837561 + 0.788016I
a = 1.00000
b = 0.560268 0.657796I
1.94548 2.30273I 6.63987 + 2.99878I
u = 0.837561 0.788016I
a = 1.00000
b = 0.560268 + 0.657796I
1.94548 + 2.30273I 6.63987 2.99878I
u = 0.656329 + 0.295939I
a = 1.00000
b = 0.297621 + 1.050690I
1.94548 2.30273I 6.63987 + 2.99878I
u = 0.656329 0.295939I
a = 1.00000
b = 0.297621 1.050690I
1.94548 + 2.30273I 6.63987 2.99878I
u = 0.95137 + 1.23664I
a = 1.00000
b = 1.169000 + 0.742016I
7.58413 + 7.68015I 6.00758 6.55636I
u = 0.95137 1.23664I
a = 1.00000
b = 1.169000 0.742016I
7.58413 7.68015I 6.00758 + 6.55636I
9
III. I
u
3
=
h1.44×10
22
u
23
+2.01×10
22
u
22
+· · ·+8.55×10
22
b+4.63×10
23
, 6.78×10
27
u
23
+
1.03 × 10
28
u
22
+ · · · + 1.86 × 10
28
a + 3.22 × 10
29
, u
24
+ u
23
+ · · · 26u + 67i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
0.365219u
23
0.554519u
22
+ ··· 56.6942u 17.3675
0.168492u
23
0.234573u
22
+ ··· 18.0977u 5.41691
a
1
=
0.196727u
23
0.319946u
22
+ ··· 38.5965u 11.9506
0.168492u
23
0.234573u
22
+ ··· 18.0977u 5.41691
a
8
=
0.378827u
23
+ 0.547263u
22
+ ··· + 70.2497u + 31.8889
0.0711438u
23
+ 0.0997089u
22
+ ··· + 6.43136u + 6.60068
a
6
=
0.413307u
23
+ 0.527233u
22
+ ··· + 69.0401u + 33.4117
0.0366636u
23
0.119739u
22
+ ··· 5.64098u 5.07784
a
2
=
0.531591u
23
1.06310u
22
+ ··· 46.4641u 72.9977
0.0738408u
23
0.0393684u
22
+ ··· 4.06916u + 5.13154
a
5
=
0.163715u
23
+ 0.0132091u
22
+ ··· + 44.8521u 33.5831
0.0580226u
23
0.0407545u
22
+ ··· + 14.5495u 11.8038
a
9
=
0.318510u
23
0.571602u
22
+ ··· 58.1444u 24.6338
0.0998054u
23
0.191253u
22
+ ··· 13.3096u 9.69092
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49507502818400620336471888
55425173492754441021594851
u
23
25666816923514324973679840
55425173492754441021594851
u
22
+
···
8454714591899753146209998108
55425173492754441021594851
u +
3209287438838954049727512794
55425173492754441021594851
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
24
u
23
+ ··· + 26u + 67
c
2
, c
7
(u
12
u
11
+ ··· 24u + 19)
2
c
4
, c
9
(u
3
+ u
2
+ 2u + 1)
8
c
5
, c
10
(u
4
+ u
3
2u + 1)
6
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
24
+ 9y
23
+ ··· + 68200y + 4489
c
2
, c
7
(y
12
13y
11
+ ··· 2096y + 361)
2
c
4
, c
9
(y
3
+ 3y
2
+ 2y 1)
8
c
5
, c
10
(y
4
y
3
+ 6y
2
4y + 1)
6
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.690412 + 0.835611I
a = 0.969409 + 0.292352I
b = 1.12196 1.05376I
2.17641 + 4.05977I 2.98049 6.92820I
u = 0.690412 0.835611I
a = 0.969409 0.292352I
b = 1.12196 + 1.05376I
2.17641 4.05977I 2.98049 + 6.92820I
u = 0.611027 + 0.676812I
a = 0.37068 + 1.40297I
b = 0.621964 0.187730I
2.17641 4.05977I 2.98049 + 6.92820I
u = 0.611027 0.676812I
a = 0.37068 1.40297I
b = 0.621964 + 0.187730I
2.17641 + 4.05977I 2.98049 6.92820I
u = 0.424999 + 1.011890I
a = 0.945558 + 0.285159I
b = 1.12196 + 1.05376I
2.17641 4.05977I 2.98049 + 6.92820I
u = 0.424999 1.011890I
a = 0.945558 0.285159I
b = 1.12196 1.05376I
2.17641 + 4.05977I 2.98049 6.92820I
u = 0.211529 + 0.854823I
a = 1.85383 + 1.20187I
b = 0.621964 + 0.187730I
6.31400 + 1.23164I 9.50976 3.94876I
u = 0.211529 0.854823I
a = 1.85383 1.20187I
b = 0.621964 0.187730I
6.31400 1.23164I 9.50976 + 3.94876I
u = 0.211301 + 1.222120I
a = 0.610648 0.042788I
b = 1.12196 1.05376I
6.31400 + 1.23164I 9.50976 3.94876I
u = 0.211301 1.222120I
a = 0.610648 + 0.042788I
b = 1.12196 + 1.05376I
6.31400 1.23164I 9.50976 + 3.94876I
13
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.076739 + 0.755326I
a = 1.62960 0.11419I
b = 1.12196 + 1.05376I
6.31400 1.23164I 9.50976 + 3.94876I
u = 0.076739 0.755326I
a = 1.62960 + 0.11419I
b = 1.12196 1.05376I
6.31400 + 1.23164I 9.50976 3.94876I
u = 0.723053 + 1.108140I
a = 0.176034 0.666262I
b = 0.621964 0.187730I
2.17641 4.05977I 2.98049 + 6.92820I
u = 0.723053 1.108140I
a = 0.176034 + 0.666262I
b = 0.621964 + 0.187730I
2.17641 + 4.05977I 2.98049 6.92820I
u = 0.011192 + 0.596382I
a = 2.23288 3.23226I
b = 0.621964 + 0.187730I
6.31400 + 6.88789I 9.50976 9.90765I
u = 0.011192 0.596382I
a = 2.23288 + 3.23226I
b = 0.621964 0.187730I
6.31400 6.88789I 9.50976 + 9.90765I
u = 0.67325 + 1.26988I
a = 1.192260 0.277988I
b = 1.12196 1.05376I
6.31400 + 6.88789I 9.50976 9.90765I
u = 0.67325 1.26988I
a = 1.192260 + 0.277988I
b = 1.12196 + 1.05376I
6.31400 6.88789I 9.50976 + 9.90765I
u = 1.15569 + 1.32686I
a = 0.795498 0.185479I
b = 1.12196 + 1.05376I
6.31400 6.88789I 9.50976 + 9.90765I
u = 1.15569 1.32686I
a = 0.795498 + 0.185479I
b = 1.12196 1.05376I
6.31400 + 6.88789I 9.50976 9.90765I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.41952 + 1.33047I
a = 0.379792 0.246225I
b = 0.621964 + 0.187730I
6.31400 + 1.23164I 9.50976 3.94876I
u = 1.41952 1.33047I
a = 0.379792 + 0.246225I
b = 0.621964 0.187730I
6.31400 1.23164I 9.50976 + 3.94876I
u = 1.90267 + 1.36783I
a = 0.144680 + 0.209435I
b = 0.621964 + 0.187730I
6.31400 + 6.88789I 0
u = 1.90267 1.36783I
a = 0.144680 0.209435I
b = 0.621964 0.187730I
6.31400 6.88789I 0
15
IV. I
u
4
= h118u
11
136u
10
+ · · · + 209b 456, 142u
11
116u
10
+ · · · +
209a 90, u
12
u
11
+ · · · 4u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
0.679426u
11
+ 0.555024u
10
+ ··· + 1.19139u + 0.430622
0.564593u
11
+ 0.650718u
10
+ ··· 4.52153u + 2.18182
a
1
=
1.24402u
11
0.0956938u
10
+ ··· + 5.71292u 1.75120
0.564593u
11
+ 0.650718u
10
+ ··· 4.52153u + 2.18182
a
8
=
4.11005u
11
+ 2.44976u
10
+ ··· 15.3349u + 4.11483
0.210526u
11
0.578947u
10
+ ··· + 1.84211u 0.473684
a
6
=
3.77512u
11
+ 1.07177u
10
+ ··· 12.5742u + 2.60287
0.124402u
11
0.799043u
10
+ ··· + 2.91866u 1.03828
a
2
=
1.77990u
11
0.0574163u
10
+ ··· 4.54067u + 0.717703
2.27751u
11
1.03349u
10
+ ··· + 9.68900u 3.50239
a
5
=
1.03349u
11
+ 1.56938u
10
+ ··· 10.1340u + 2.96172
1.32057u
11
0.392344u
10
+ ··· 1.07177u + 0.114833
a
9
=
0.162679u
11
+ 0.344498u
10
+ ··· + 1.45455u 0.516746
0.172249u
11
+ 0.440191u
10
+ ··· 1.15311u + 1.12919
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1120
209
u
11
+
1572
209
u
10
1784
209
u
9
296
209
u
8
144
209
u
7
+
13308
209
u
6
3548
209
u
5
7224
209
u
4
268
19
u
3
+
10060
209
u
2
9100
209
u +
4462
209
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
12
+ u
11
+ ··· + 4u + 1
c
2
, c
7
u
12
+ 3u
11
+ ··· + 30u + 7
c
4
, c
9
(u
3
+ u
2
+ 2u + 1)
4
c
5
, c
10
(u
2
+ u + 1)
6
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
12
+ 3y
11
+ ··· + 4y
2
+ 1
c
2
, c
7
y
12
+ 7y
11
+ ··· 228y + 49
c
4
, c
9
(y
3
+ 3y
2
+ 2y 1)
4
c
5
, c
10
(y
2
+ y + 1)
6
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.861381 + 0.168036I
a = 0.127543 + 0.669764I
b = 0.500000 + 0.866025I
3.02413 1.23164I 2.49024 + 3.94876I
u = 0.861381 0.168036I
a = 0.127543 0.669764I
b = 0.500000 0.866025I
3.02413 + 1.23164I 2.49024 3.94876I
u = 0.982330 + 0.603340I
a = 1.36153 0.93064I
b = 0.500000 + 0.866025I
3.02413 6.88789I 2.49024 + 9.90765I
u = 0.982330 0.603340I
a = 1.36153 + 0.93064I
b = 0.500000 0.866025I
3.02413 + 6.88789I 2.49024 9.90765I
u = 0.514136 + 0.376971I
a = 2.08379 + 0.47689I
b = 0.500000 0.866025I
1.11345 + 4.05977I 9.01951 6.92820I
u = 0.514136 0.376971I
a = 2.08379 0.47689I
b = 0.500000 + 0.866025I
1.11345 4.05977I 9.01951 + 6.92820I
u = 0.891575 + 1.030720I
a = 0.456012 + 0.104362I
b = 0.500000 + 0.866025I
1.11345 4.05977I 9.01951 + 6.92820I
u = 0.891575 1.030720I
a = 0.456012 0.104362I
b = 0.500000 0.866025I
1.11345 + 4.05977I 9.01951 6.92820I
u = 0.222408 + 0.555490I
a = 0.27437 + 1.44082I
b = 0.500000 0.866025I
3.02413 + 1.23164I 2.49024 3.94876I
u = 0.222408 0.555490I
a = 0.27437 1.44082I
b = 0.500000 + 0.866025I
3.02413 1.23164I 2.49024 + 3.94876I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.77598 + 1.73565I
a = 0.500591 0.342166I
b = 0.500000 0.866025I
3.02413 + 6.88789I 2.49024 9.90765I
u = 0.77598 1.73565I
a = 0.500591 + 0.342166I
b = 0.500000 + 0.866025I
3.02413 6.88789I 2.49024 + 9.90765I
20
V.
I
u
5
= hu
5
+ 2u
4
4u
3
+ u
2
+ 12b + 5u + 3, a + 1, u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
1
12
u
5
1
6
u
4
+ ···
5
12
u
1
4
a
1
=
1
12
u
5
+
1
6
u
4
+ ··· +
5
12
u
3
4
1
12
u
5
1
6
u
4
+ ···
5
12
u
1
4
a
8
=
1
12
u
5
1
3
u
4
+ ···
7
12
u +
3
4
1
6
u
5
1
6
u
4
+ ··· +
5
6
u 1
a
6
=
u
1
4
u
5
+
1
2
u
4
+ ··· +
3
4
u +
1
4
a
2
=
1
4
u
5
+
1
2
u
4
+ ··· +
1
4
u +
7
4
1
4
u
5
+
1
2
u
3
+ ··· +
3
4
u
1
4
a
5
=
1
6
u
5
1
6
u
4
+ ···
1
6
u
2
3
5
12
u
5
+
1
2
u
4
+ ···
3
4
u +
5
12
a
9
=
1
12
u
5
+
1
6
u
4
+ ··· +
5
12
u
3
4
1
6
u
5
2
3
u
4
+ ···
1
6
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
4
u
5
u
4
1
2
u
3
+
5
4
u
2
9
4
u
17
4
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3
c
2
, c
7
(u
3
+ 2u
2
+ u 1)
2
c
4
, c
9
3(3u
6
+ 14u
4
+ 23u
2
+ 13)
c
5
, c
10
3(3u
6
9u
5
+ 11u
4
3u
3
3u
2
+ u + 1)
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
6
+ 3y
5
+ 10y
4
+ 13y
3
+ 16y
2
+ 12y + 9
c
2
, c
7
(y
3
2y
2
+ 5y 1)
2
c
4
, c
9
9(3y
3
+ 14y
2
+ 23y + 13)
2
c
5
, c
10
9(9y
6
15y
5
+ 49y
4
51y
3
+ 37y
2
7y + 1)
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.783974 + 0.693760I
a = 1.00000
b = 0.383600 + 0.213445I
5.55560 + 6.33267I 0.64281 3.53920I
u = 0.783974 0.693760I
a = 1.00000
b = 0.383600 0.213445I
5.55560 6.33267I 0.64281 + 3.53920I
u = 0.391622 + 0.997262I
a = 1.00000
b = 0.841164 0.404475I
5.33814 4.71439 + 0.I
u = 0.391622 0.997262I
a = 1.00000
b = 0.841164 + 0.404475I
5.33814 4.71439 + 0.I
u = 0.89235 + 1.26033I
a = 1.00000
b = 1.042440 + 0.948097I
5.55560 + 6.33267I 0.64281 3.53920I
u = 0.89235 1.26033I
a = 1.00000
b = 1.042440 0.948097I
5.55560 6.33267I 0.64281 + 3.53920I
24
VI. I
u
6
= hb + u + 1, a + 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u + 1
a
10
=
1
u 1
a
1
=
u
u 1
a
8
=
1
0
a
6
=
u
u + 1
a
2
=
0
u
a
5
=
1
u + 1
a
9
=
1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
2
+ u + 1
c
2
, c
5
, c
7
c
10
u
2
u + 1
c
4
, c
9
u
2
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
4
, c
9
y
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
28
VII.
I
u
7
= hb1, 3u
5
4u
4
6u
3
+6u
2
+a7u+1, u
6
+u
5
+2u
4
2u
3
+4u
2
2u+1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
3u
5
+ 4u
4
+ 6u
3
6u
2
+ 7u 1
1
a
1
=
3u
5
+ 4u
4
+ 6u
3
6u
2
+ 7u 2
1
a
8
=
u
4
+ 2u
3
+ 3u
2
u + 1
u
5
+ 5u
2
3u + 3
a
6
=
2u
5
+ u
4
+ 2u
3
+ 13u
2
10u + 7
u
5
+ 5u
2
4u + 3
a
2
=
2u
5
+ 6u
4
+ 9u
3
+ 3u
2
2u + 5
u
5
+ 2u
4
+ 3u
3
u
2
+ u
a
5
=
2u
5
+ 10u
2
9u + 6
u
a
9
=
4u
5
+ 6u
4
+ 9u
3
7u
2
+ 8u 1
u
4
+ u
3
+ 2u
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 20u
2
16u + 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
6
u
5
+ 2u
4
+ 2u
3
+ 4u
2
+ 2u + 1
c
2
, c
7
(u
3
u
2
+ 1)
2
c
4
, c
9
(u
3
+ u
2
+ 2u + 1)
2
c
5
, c
10
(u + 1)
6
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
6
+ 3y
5
+ 16y
4
+ 18y
3
+ 12y
2
+ 4y + 1
c
2
, c
7
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
(y
3
+ 3y
2
+ 2y 1)
2
c
5
, c
10
(y 1)
6
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.288915 + 0.750335I
a = 2.25666 0.68552I
b = 1.00000
6.31400 + 2.82812I 9.50976 2.97945I
u = 0.288915 0.750335I
a = 2.25666 + 0.68552I
b = 1.00000
6.31400 2.82812I 9.50976 + 2.97945I
u = 0.377439 + 0.536376I
a = 0.337641 + 0.941275I
b = 1.00000
2.17641 2.98049 + 0.I
u = 0.377439 0.536376I
a = 0.337641 0.941275I
b = 1.00000
2.17641 2.98049 + 0.I
u = 1.16635 + 1.49520I
a = 0.405695 0.123240I
b = 1.00000
6.31400 2.82812I 9.50976 + 2.97945I
u = 1.16635 1.49520I
a = 0.405695 + 0.123240I
b = 1.00000
6.31400 + 2.82812I 9.50976 2.97945I
32
VIII. I
u
8
= hb, a + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1
0
a
1
=
1
0
a
8
=
u
u
a
6
=
u
u
a
2
=
u
2
+ 1
u
2
a
5
=
u
u
a
9
=
u
2
1
u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 6
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
u
3
+ u
2
1
c
4
, c
9
u
3
u
2
+ 2u 1
c
5
, c
10
u
3
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
+ 3y
2
+ 2y 1
c
5
, c
10
y
3
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.877439 0.744862I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.754878
a = 1.00000
b = 0
1.11345 9.01950
36
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
(u
2
+ u + 1)(u
3
+ u
2
1)(u
5
u
4
+ u
3
+ u
2
+ 3u 3)
· (u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 3)(u
6
u
5
+ 2u
4
+ 2u
3
+ 4u
2
+ 2u + 1)
· (u
10
+ u
8
+ ··· + 2u
3
+ 1)(u
12
+ u
11
+ ··· + 4u + 1)
· (u
24
u
23
+ ··· + 26u + 67)
c
2
, c
7
(u
2
u + 1)(u
3
u
2
+ 1)
2
(u
3
+ u
2
1)(u
3
+ 2u
2
+ u 1)
2
· (u
5
3u
3
+ 7u 4)(u
5
u
4
+ 1)
2
(u
12
u
11
+ ··· 24u + 19)
2
· (u
12
+ 3u
11
+ ··· + 30u + 7)
c
4
, c
9
9u
2
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
14
· (u
5
4u
4
+ 9u
3
13u
2
+ 10u 4)
2
· (3u
5
12u
4
+ 26u
3
36u
2
+ 28u 8)(3u
6
+ 14u
4
+ 23u
2
+ 13)
c
5
, c
10
9u
3
(u + 1)
6
(u
2
u + 1)(u
2
+ u + 1)
6
(u
4
+ u
3
2u + 1)
6
· (3u
5
15u
4
+ 35u
3
41u
2
+ 23u 1)
· (3u
6
9u
5
+ ··· + u + 1)(u
10
10u
9
+ ··· 95u + 19)
37
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
(y
2
+ y + 1)(y
3
y
2
+ 2y 1)(y
5
+ y
4
+ 9y
3
y
2
+ 15y 9)
· (y
6
+ 3y
5
+ 10y
4
+ 13y
3
+ 16y
2
+ 12y + 9)
· (y
6
+ 3y
5
+ 16y
4
+ 18y
3
+ 12y
2
+ 4y + 1)
· (y
10
+ 2y
9
+ 9y
8
+ 9y
7
+ 16y
6
+ 13y
5
+ 7y
4
+ 4y
3
+ 2y
2
+ 1)
· (y
12
+ 3y
11
+ ··· + 4y
2
+ 1)(y
24
+ 9y
23
+ ··· + 68200y + 4489)
c
2
, c
7
(y
2
+ y + 1)(y
3
2y
2
+ 5y 1)
2
(y
3
y
2
+ 2y 1)
3
· (y
5
6y
4
+ 23y
3
42y
2
+ 49y 16)(y
5
y
4
+ 2y
2
1)
2
· ((y
12
13y
11
+ ··· 2096y + 361)
2
)(y
12
+ 7y
11
+ ··· 228y + 49)
c
4
, c
9
81y
2
(y
3
+ 3y
2
+ 2y 1)
15
(3y
3
+ 14y
2
+ 23y + 13)
2
· (y
5
+ 2y
4
3y
3
21y
2
4y 16)
2
· (9y
5
+ 12y
4
20y
3
32y
2
+ 208y 64)
c
5
, c
10
81y
3
(y 1)
6
(y
2
+ y + 1)
7
(y
4
y
3
+ 6y
2
4y + 1)
6
· (9y
5
15y
4
+ 133y
3
101y
2
+ 447y 1)
· (9y
6
15y
5
+ 49y
4
51y
3
+ 37y
2
7y + 1)
· (y
10
4y
9
+ ··· + 361y + 361)
38