12a
1278
(K12a
1278
)
A knot diagram
1
Linearized knot diagam
5 8 9 10 1 12 11 3 4 2 7 6
Solving Sequence
3,9
4 10 5 8 2 11 1 6 7 12
c
3
c
9
c
4
c
8
c
2
c
10
c
1
c
5
c
7
c
12
c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
20
u
19
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
20
u
19
+ · · · + 2u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
8
=
u
u
a
2
=
u
2
+ 1
u
2
a
11
=
u
7
+ 4u
5
4u
3
+ 2u
u
7
3u
5
+ u
a
1
=
u
8
+ 5u
6
7u
4
+ 2u
2
+ 1
u
10
6u
8
+ 11u
6
6u
4
+ u
2
a
6
=
u
14
+ 9u
12
30u
10
+ 45u
8
28u
6
+ 2u
4
+ 2u
2
+ 1
u
16
10u
14
+ 38u
12
68u
10
+ 58u
8
22u
6
+ 4u
4
2u
2
a
7
=
u
13
+ 8u
11
23u
9
+ 30u
7
20u
5
+ 6u
3
u
u
13
7u
11
+ 15u
9
8u
7
4u
5
+ 3u
3
+ u
a
12
=
u
19
+ 12u
17
+ ··· 7u
3
+ 2u
u
19
11u
17
+ 46u
15
89u
13
+ 73u
11
5u
9
22u
7
+ 2u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
+ 48u
15
228u
13
+ 544u
11
4u
10
684u
9
+ 28u
8
+
432u
7
64u
6
116u
5
+ 52u
4
+ 32u
3
12u
2
24u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
u
20
+ u
19
+ ··· 2u 1
c
2
, c
3
, c
4
c
8
, c
9
u
20
u
19
+ ··· + 2u 1
c
10
u
20
5u
19
+ ··· 238u + 95
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
y
20
+ 29y
19
+ ··· + 6y + 1
c
2
, c
3
, c
4
c
8
, c
9
y
20
27y
19
+ ··· + 6y + 1
c
10
y
20
19y
19
+ ··· 60634y + 9025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.957042 + 0.156119I
3.42442 2.40418I 8.88830 + 6.40859I
u = 0.957042 0.156119I
3.42442 + 2.40418I 8.88830 6.40859I
u = 1.053290 + 0.250152I
9.25346 + 4.00690I 11.03271 4.36295I
u = 1.053290 0.250152I
9.25346 4.00690I 11.03271 + 4.36295I
u = 0.872181
1.81973 3.09740
u = 1.102630 + 0.306812I
19.0311 4.8024I 11.07225 + 3.50232I
u = 1.102630 0.306812I
19.0311 + 4.8024I 11.07225 3.50232I
u = 0.352552 + 0.563000I
15.8889 + 1.8393I 6.96532 3.24641I
u = 0.352552 0.563000I
15.8889 1.8393I 6.96532 + 3.24641I
u = 0.313620 + 0.473687I
5.00086 1.54932I 6.51491 + 4.26161I
u = 0.313620 0.473687I
5.00086 + 1.54932I 6.51491 4.26161I
u = 0.153630 + 0.311091I
0.036981 + 0.768397I 1.20151 8.96620I
u = 0.153630 0.311091I
0.036981 0.768397I 1.20151 + 8.96620I
u = 1.70374
11.1012 4.65580
u = 1.71447 + 0.03374I
12.98260 + 3.12195I 9.08784 4.56508I
u = 1.71447 0.03374I
12.98260 3.12195I 9.08784 + 4.56508I
u = 1.73483 + 0.06198I
19.2194 5.2785I 11.51082 + 3.23526I
u = 1.73483 0.06198I
19.2194 + 5.2785I 11.51082 3.23526I
u = 1.74996 + 0.07966I
8.82272 + 6.42667I 11.84974 2.46747I
u = 1.74996 0.07966I
8.82272 6.42667I 11.84974 + 2.46747I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
u
20
+ u
19
+ ··· 2u 1
c
2
, c
3
, c
4
c
8
, c
9
u
20
u
19
+ ··· + 2u 1
c
10
u
20
5u
19
+ ··· 238u + 95
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
y
20
+ 29y
19
+ ··· + 6y + 1
c
2
, c
3
, c
4
c
8
, c
9
y
20
27y
19
+ ··· + 6y + 1
c
10
y
20
19y
19
+ ··· 60634y + 9025
7