10
123
(K10a
121
)
A knot diagram
1
Linearized knot diagam
8 9 10 1 2 3 4 5 6 7
Solving Sequence
1,4 5,7
8 2 9 10 3 6
c
4
c
7
c
1
c
8
c
10
c
3
c
6
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= hu
3
+ 2u
2
+ b + 2u + 1, a 1, u
4
+ 3u
3
+ 4u
2
+ 2u + 1i
I
u
2
= hu
3
+ b + 1, a + 1, u
4
u
3
+ 2u 1i
I
u
3
= h−6u
9
+ 3u
8
+ 17u
7
22u
6
19u
5
+ 31u
4
+ 5u
3
22u
2
+ 2b + 2u + 6,
6u
9
21u
8
+ 13u
7
+ 31u
6
48u
5
5u
4
+ 36u
3
13u
2
+ 2a 9u + 2,
3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1i
I
u
4
= h18u
9
30u
8
9u
7
+ 67u
6
26u
5
41u
4
+ 35u
3
+ 7u
2
+ 2b 8u, a 1,
3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1i
I
u
5
= h−2u
9
+ 7u
8
14u
7
+ 19u
6
27u
5
+ 34u
4
40u
3
+ 33u
2
+ 2b 22u + 6,
4u
9
+ 14u
8
28u
7
+ 41u
6
58u
5
+ 73u
4
81u
3
+ 76u
2
+ 6a 50u + 23,
u
10
4u
9
+ 9u
8
14u
7
+ 20u
6
26u
5
+ 31u
4
30u
3
+ 23u
2
12u + 3i
I
u
6
= h5u
9
20u
8
+ 42u
7
61u
6
+ 85u
5
109u
4
+ 125u
3
114u
2
+ 6b + 79u 30,
u
9
+ 2u
8
9u
7
+ 19u
6
22u
5
+ 34u
4
41u
3
+ 54u
2
+ 6a 40u + 24,
u
10
4u
9
+ 9u
8
14u
7
+ 20u
6
26u
5
+ 31u
4
30u
3
+ 23u
2
12u + 3i
I
u
7
= h−17u
9
123u
8
488u
7
1301u
6
2539u
5
3687u
4
4024u
3
3128u
2
+ 144b 1616u 496,
u
9
+ 21u
8
+ 118u
7
+ 397u
6
+ 917u
5
+ 1557u
4
+ 1958u
3
+ 1792u
2
+ 96a + 1096u + 416,
u
10
+ 7u
9
+ 28u
8
+ 77u
7
+ 159u
6
+ 251u
5
+ 308u
4
+ 288u
3
+ 200u
2
+ 96u + 32i
I
u
8
= ha
3
u
2
2a
2
u
2
+ a
2
u + u
2
a + ba + a
2
au a + 1, a
2
u
2
u
2
a + bu + au + b + a, u
3
a
2
u
3
a + au u 1i
* 7 irreducible components of dim
C
= 0, with total 58 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hu
3
+ 2u
2
+ b + 2u + 1, a 1, u
4
+ 3u
3
+ 4u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
1
u
3
2u
2
2u 1
a
8
=
u
3
2u
2
2u
u
3
2u
2
2u 1
a
2
=
u
2
+ u + 1
u
3
u
2
a
9
=
u
3
2u
2
u
2u
2
2u 1
a
10
=
u
u
3
+ 2u
2
+ 2u + 1
a
3
=
u
3
2u
2
u
u
3
+ u
2
+ u
a
6
=
u
3
3u
2
2u
u
3
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
10u
2
15u 5
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
u
4
3u
3
+ 4u
2
2u + 1
c
2
, c
4
, c
6
c
8
, c
10
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
y
4
y
3
+ 6y
2
+ 4y + 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.190983 + 0.587785I
a = 1.00000
b = 0.190983 0.587785I
1.38939I 0. 5.87785I
u = 0.190983 0.587785I
a = 1.00000
b = 0.190983 + 0.587785I
1.38939I 0. + 5.87785I
u = 1.30902 + 0.95106I
a = 1.00000
b = 1.30902 0.95106I
17.0857I 0. 9.51057I
u = 1.30902 0.95106I
a = 1.00000
b = 1.30902 + 0.95106I
17.0857I 0. + 9.51057I
6
II. I
u
2
= hu
3
+ b + 1, a + 1, u
4
u
3
+ 2u 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
1
u
3
1
a
8
=
u
3
2
u
3
1
a
2
=
2u
3
u
2
u + 3
u
3
u
2
+ 2
a
9
=
u
3
+ u 2
1
a
10
=
u
u
3
+ 1
a
3
=
u
3
u + 2
u
3
u
2
u + 2
a
6
=
u
3
+ u
2
2
u
3
+ u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
+ 5u + 5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
u
4
+ u
3
2u 1
c
2
, c
4
, c
6
c
8
, c
10
u
4
u
3
+ 2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
y
4
y
3
+ 2y
2
4y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.15372
a = 1.00000
b = 0.535687
4.48216 8.44700
u = 0.809017 + 0.981593I
a = 1.00000
b = 0.809017 0.981593I
9.37207I 0. + 9.81593I
u = 0.809017 0.981593I
a = 1.00000
b = 0.809017 + 0.981593I
9.37207I 0. 9.81593I
u = 0.535687
a = 1.00000
b = 1.15372
4.48216 8.44700
10
III.
I
u
3
= h−6u
9
+3u
8
+· · ·+2b+6, 6u
9
21u
8
+· · ·+2a+2, 3u
10
6u
9
+· · ·−5u
2
+1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
3u
9
+
21
2
u
8
+ ··· +
9
2
u 1
3u
9
3
2
u
8
+ ··· u 3
a
8
=
9u
8
15u
7
+ ··· +
7
2
u 4
3u
9
3
2
u
8
+ ··· u 3
a
2
=
12u
9
27
2
u
8
+ ··· 11u 3
3
2
u
9
3u
8
+ ··· 3u
1
2
a
9
=
9u
8
15u
7
+ ··· +
9
2
u 4
3u
9
3
2
u
8
+ ··· u 3
a
10
=
6u
9
9
2
u
8
+ ···
5
2
u
1
2
9
2
u
9
6u
8
+ ···
7
2
u 2
a
3
=
3u
8
+ 3u
7
+ 4u
6
10u
5
2u
4
+ 8u
3
3u
2
5u + 1
9
2
u
9
+
9
2
u
8
+ ··· + 2u +
5
2
a
6
=
21u
9
+
75
2
u
8
+ ··· +
21
2
u +
1
2
6u
9
+
21
2
u
8
+ ··· +
9
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
9
+ 6u
8
64u
7
+ 52u
6
+ 90u
5
110u
4
30u
3
+ 86u
2
4u 24
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
7u
9
+ ··· 96u + 32
c
2
, c
10
u
10
4u
9
+ ··· 12u + 3
c
3
, c
9
3(3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
c
4
, c
8
3(3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
c
5
, c
7
u
10
+ 4u
9
+ ··· + 12u + 3
c
6
u
10
+ 7u
9
+ ··· + 96u + 32
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
10
+ 7y
9
+ ··· + 3584y + 1024
c
2
, c
5
, c
7
c
10
y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9
c
3
, c
4
, c
8
c
9
9(9y
10
42y
9
+ ··· 10y + 1)
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.983280 + 0.164908I
a = 0.716079 + 0.118069I
b = 0.724687 0.940396I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.983280 0.164908I
a = 0.716079 0.118069I
b = 0.724687 + 0.940396I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.707358 + 0.648629I
a = 0.105697 1.232530I
b = 0.684636 0.234182I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.707358 0.648629I
a = 0.105697 + 1.232530I
b = 0.684636 + 0.234182I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.744942 + 0.201707I
a = 1.81391 + 0.74172I
b = 0.719811 + 1.046890I
2.49243 8.64801I 4.04126 + 7.50135I
u = 0.744942 0.201707I
a = 1.81391 0.74172I
b = 0.719811 1.046890I
2.49243 + 8.64801I 4.04126 7.50135I
u = 1.081500 + 0.798609I
a = 0.893282 0.308372I
b = 1.20165 0.91842I
2.49243 8.64801I 4.04126 + 7.50135I
u = 1.081500 0.798609I
a = 0.893282 + 0.308372I
b = 1.20165 + 0.91842I
2.49243 + 8.64801I 4.04126 7.50135I
u = 0.550514 + 0.187402I
a = 0.40115 1.75920I
b = 0.108840 1.043640I
0.806279I 0. 8.22652I
u = 0.550514 0.187402I
a = 0.40115 + 1.75920I
b = 0.108840 + 1.043640I
0.806279I 0. + 8.22652I
14
IV. I
u
4
= h18u
9
30u
8
+ · · · + 2b 8u, a 1, 3u
10
6u
9
+ · · · 5u
2
+ 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
1
9u
9
+ 15u
8
+ ···
7
2
u
2
+ 4u
a
8
=
9u
9
+ 15u
8
+ ··· + 4u + 1
9u
9
+ 15u
8
+ ···
7
2
u
2
+ 4u
a
2
=
3
2
u
9
3
2
u
8
+ ··· 3u +
5
2
3
2
u
9
3u
8
+ ··· 3u
1
2
a
9
=
9
2
u
9
+
15
2
u
8
+ ··· + 3u + 2
6u
9
+
21
2
u
8
+ ··· +
5
2
u
1
2
a
10
=
u
3u
9
+
3
2
u
8
+ ··· + u + 3
a
3
=
9
2
u
9
+
15
2
u
8
+ ··· + 3u + 2
9
2
u
9
+ 6u
8
+ ··· +
5
2
u +
1
2
a
6
=
3
2
u
9
+
3
2
u
8
+ ··· u
3
2
3
2
u
9
3
2
u
8
+ ···
3
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
9
+ 6u
8
64u
7
+ 52u
6
+ 90u
5
110u
4
30u
3
+ 86u
2
4u 24
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
10
+ 4u
9
+ ··· + 12u + 3
c
2
u
10
+ 7u
9
+ ··· + 96u + 32
c
4
, c
10
3(3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
c
5
, c
9
3(3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
c
6
, c
8
u
10
4u
9
+ ··· 12u + 3
c
7
u
10
7u
9
+ ··· 96u + 32
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9
c
2
, c
7
y
10
+ 7y
9
+ ··· + 3584y + 1024
c
4
, c
5
, c
9
c
10
9(9y
10
42y
9
+ ··· 10y + 1)
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.983280 + 0.164908I
a = 1.00000
b = 0.127144 0.809997I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.983280 0.164908I
a = 1.00000
b = 0.127144 + 0.809997I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.707358 + 0.648629I
a = 1.00000
b = 1.36087 + 0.66197I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.707358 0.648629I
a = 1.00000
b = 1.36087 0.66197I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.744942 + 0.201707I
a = 1.00000
b = 0.45427 1.55310I
2.49243 8.64801I 4.04126 + 7.50135I
u = 0.744942 0.201707I
a = 1.00000
b = 0.45427 + 1.55310I
2.49243 + 8.64801I 4.04126 7.50135I
u = 1.081500 + 0.798609I
a = 1.00000
b = 1.31322 + 1.08050I
2.49243 8.64801I 4.04126 + 7.50135I
u = 1.081500 0.798609I
a = 1.00000
b = 1.31322 1.08050I
2.49243 + 8.64801I 4.04126 7.50135I
u = 0.550514 + 0.187402I
a = 1.00000
b = 0.24450 1.63857I
0.806279I 0. 8.22652I
u = 0.550514 0.187402I
a = 1.00000
b = 0.24450 + 1.63857I
0.806279I 0. + 8.22652I
18
V. I
u
5
=
h−2u
9
+7u
8
+· · ·+2b+6, 4u
9
+14u
8
+· · ·+6a+23, u
10
4u
9
+· · ·12u+3i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
2
3
u
9
7
3
u
8
+ ··· +
25
3
u
23
6
u
9
7
2
u
8
+ ··· + 11u 3
a
8
=
5
3
u
9
35
6
u
8
+ ··· +
58
3
u
41
6
u
9
7
2
u
8
+ ··· + 11u 3
a
2
=
1.11111u
9
+ 3.44444u
8
+ ··· 11.3889u + 3.83333
1
2
u
8
+
3
2
u
7
+ ··· +
9
2
u 2
a
9
=
2
3
u
9
17
6
u
8
+ ··· +
40
3
u
19
3
1
2
u
9
3
2
u
8
+ ··· 5u
2
+ 2u
a
10
=
0.111111u
9
+ 0.944444u
8
+ ··· 6.38889u + 3.33333
u
9
+ 3u
8
+ ···
15
2
u +
5
2
a
3
=
0.944444u
9
+ 3.27778u
8
+ ··· 13.0556u + 5.83333
1
2
u
9
+ u
8
+ ···
3
2
u
1
2
a
6
=
0.888889u
9
+ 2.77778u
8
+ ··· 7.27778u + 2.44444
2
3
u
9
5
3
u
8
+ ··· +
17
6
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
80
9
u
9
296
9
u
8
+ 66u
7
838
9
u
6
+
1174
9
u
5
1504
9
u
4
+
1706
9
u
3
496
3
u
2
+
946
9
u
112
3
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
3(3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
c
2
, c
4
u
10
4u
9
+ ··· 12u + 3
c
3
u
10
7u
9
+ ··· 96u + 32
c
6
, c
10
3(3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
c
7
, c
9
u
10
+ 4u
9
+ ··· + 12u + 3
c
8
u
10
+ 7u
9
+ ··· + 96u + 32
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
9(9y
10
42y
9
+ ··· 10y + 1)
c
2
, c
4
, c
7
c
9
y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9
c
3
, c
8
y
10
+ 7y
9
+ ··· + 3584y + 1024
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.108840 + 1.043640I
a = 0.123214 + 0.540345I
b = 0.108840 1.043640I
0.806279I 0. 8.22652I
u = 0.108840 1.043640I
a = 0.123214 0.540345I
b = 0.108840 + 1.043640I
0.806279I 0. + 8.22652I
u = 0.724687 + 0.940396I
a = 0.069070 0.805418I
b = 0.684636 + 0.234182I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.724687 0.940396I
a = 0.069070 + 0.805418I
b = 0.684636 0.234182I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.719811 + 1.046890I
a = 1.000260 0.345304I
b = 1.20165 + 0.91842I
2.49243 + 8.64801I 4.04126 7.50135I
u = 0.719811 1.046890I
a = 1.000260 + 0.345304I
b = 1.20165 0.91842I
2.49243 8.64801I 4.04126 + 7.50135I
u = 0.684636 + 0.234182I
a = 1.359530 + 0.224163I
b = 0.724687 + 0.940396I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.684636 0.234182I
a = 1.359530 0.224163I
b = 0.724687 0.940396I
3.61397 + 2.21654I 5.38699 4.72022I
u = 1.20165 + 0.91842I
a = 0.472321 0.193135I
b = 0.719811 + 1.046890I
2.49243 8.64801I 4.04126 + 7.50135I
u = 1.20165 0.91842I
a = 0.472321 + 0.193135I
b = 0.719811 1.046890I
2.49243 + 8.64801I 4.04126 7.50135I
22
VI.
I
u
6
= h5u
9
20u
8
+· · ·+6b30, u
9
+2u
8
+· · ·+6a+24, u
10
4u
9
+· · ·12u+3i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
1
6
u
9
1
3
u
8
+ ··· +
20
3
u 4
5
6
u
9
+
10
3
u
8
+ ···
79
6
u + 5
a
8
=
u
9
+ 3u
8
+ ···
13
2
u + 1
5
6
u
9
+
10
3
u
8
+ ···
79
6
u + 5
a
2
=
2u
9
13
2
u
8
+ ··· + 22u
15
2
1
2
u
8
+
3
2
u
7
+ ··· +
9
2
u 2
a
9
=
2
3
u
9
+
5
3
u
8
+ ···
7
3
u 1
4
3
u
9
+
13
3
u
8
+ ···
85
6
u + 5
a
10
=
7
6
u
9
8
3
u
8
+ ··· +
19
3
u
1
2
5
6
u
9
10
3
u
8
+ ··· +
79
6
u 5
a
3
=
2
3
u
9
17
6
u
8
+ ··· +
40
3
u
19
3
u
9
+
19
6
u
8
+ ···
19
2
u +
10
3
a
6
=
1
2
u
8
+
3
2
u
7
+ ··· + 5u 2
1
2
u
8
3
2
u
7
+ ···
9
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
80
9
u
9
296
9
u
8
+ 66u
7
838
9
u
6
+
1174
9
u
5
1504
9
u
4
+
1706
9
u
3
496
3
u
2
+
946
9
u
112
3
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
10
+ 4u
9
+ ··· + 12u + 3
c
2
, c
8
3(3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
c
3
, c
7
3(3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
c
4
, c
6
u
10
4u
9
+ ··· 12u + 3
c
5
u
10
7u
9
+ ··· 96u + 32
c
10
u
10
+ 7u
9
+ ··· + 96u + 32
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9
c
2
, c
3
, c
7
c
8
9(9y
10
42y
9
+ ··· 10y + 1)
c
5
, c
10
y
10
+ 7y
9
+ ··· + 3584y + 1024
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.108840 + 1.043640I
a = 1.52900 + 0.39374I
b = 0.550514 0.187402I
0.806279I 0. 8.22652I
u = 0.108840 1.043640I
a = 1.52900 0.39374I
b = 0.550514 + 0.187402I
0.806279I 0. + 8.22652I
u = 0.724687 + 0.940396I
a = 0.475042 + 0.501279I
b = 0.983280 0.164908I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.724687 0.940396I
a = 0.475042 0.501279I
b = 0.983280 + 0.164908I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.719811 + 1.046890I
a = 0.804739 + 0.987238I
b = 0.744942 + 0.201707I
2.49243 + 8.64801I 4.04126 7.50135I
u = 0.719811 1.046890I
a = 0.804739 0.987238I
b = 0.744942 0.201707I
2.49243 8.64801I 4.04126 + 7.50135I
u = 0.684636 + 0.234182I
a = 2.07561 0.25693I
b = 0.707358 0.648629I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.684636 0.234182I
a = 2.07561 + 0.25693I
b = 0.707358 + 0.648629I
3.61397 + 2.21654I 5.38699 4.72022I
u = 1.20165 + 0.91842I
a = 1.123690 0.040350I
b = 1.081500 0.798609I
2.49243 8.64801I 4.04126 + 7.50135I
u = 1.20165 0.91842I
a = 1.123690 + 0.040350I
b = 1.081500 + 0.798609I
2.49243 + 8.64801I 4.04126 7.50135I
26
VII. I
u
7
= h−17u
9
123u
8
+ · · · + 144b 496, u
9
+ 21u
8
+ · · · + 96a +
416, u
10
+ 7u
9
+ · · · + 96u + 32i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
0.0104167u
9
0.218750u
8
+ ··· 11.4167u 4.33333
0.118056u
9
+ 0.854167u
8
+ ··· + 11.2222u + 3.44444
a
8
=
31
288
u
9
+
61
96
u
8
+ ···
7
36
u
8
9
0.118056u
9
+ 0.854167u
8
+ ··· + 11.2222u + 3.44444
a
2
=
1
48
u
9
7
48
u
8
+ ···
23
4
u
7
3
1
24
u
8
+
5
24
u
7
+ ··· +
4
3
u
2
3
a
9
=
0.0381944u
9
0.302083u
8
+ ··· 3.52778u 0.555556
41
144
u
9
+
89
48
u
8
+ ··· +
71
9
u +
7
9
a
10
=
1
16
u
9
7
16
u
8
+ ···
23
4
u 1
1
24
u
9
+
1
4
u
8
+ ··· +
2
3
u
2
3
a
3
=
1
8
u
9
+
11
16
u
8
+ ··· +
5
2
u +
1
2
1
16
u
9
5
16
u
8
+ ··· +
5
2
u + 2
a
6
=
0.0138889u
9
0.0208333u
8
+ ··· 5.94444u 1.38889
0.159722u
9
+ 1.10417u
8
+ ··· + 8.38889u + 1.77778
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
4
27
u
9
11
18
u
8
173
54
u
7
331
27
u
6
1765
54
u
5
1103
18
u
4
4645
54
u
3
2239
27
u
2
1420
27
u
554
27
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
3(3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
c
2
, c
6
3(3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
c
3
, c
5
u
10
+ 4u
9
+ ··· + 12u + 3
c
4
u
10
+ 7u
9
+ ··· + 96u + 32
c
8
, c
10
u
10
4u
9
+ ··· 12u + 3
c
9
u
10
7u
9
+ ··· 96u + 32
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
9(9y
10
42y
9
+ ··· 10y + 1)
c
3
, c
5
, c
8
c
10
y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9
c
4
, c
9
y
10
+ 7y
9
+ ··· + 3584y + 1024
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.127144 + 0.809997I
a = 0.99601 1.05102I
b = 0.983280 0.164908I
3.61397 + 2.21654I 5.38699 4.72022I
u = 0.127144 0.809997I
a = 0.99601 + 1.05102I
b = 0.983280 + 0.164908I
3.61397 2.21654I 5.38699 + 4.72022I
u = 1.36087 + 0.66197I
a = 0.474516 0.058738I
b = 0.707358 + 0.648629I
3.61397 + 2.21654I 5.38699 4.72022I
u = 1.36087 0.66197I
a = 0.474516 + 0.058738I
b = 0.707358 0.648629I
3.61397 2.21654I 5.38699 + 4.72022I
u = 0.45427 + 1.55310I
a = 0.496066 + 0.608563I
b = 0.744942 0.201707I
2.49243 8.64801I 4.04126 + 7.50135I
u = 0.45427 1.55310I
a = 0.496066 0.608563I
b = 0.744942 + 0.201707I
2.49243 + 8.64801I 4.04126 7.50135I
u = 0.24450 + 1.63857I
a = 0.613351 0.157946I
b = 0.550514 0.187402I
0.806279I 0. 8.22652I
u = 0.24450 1.63857I
a = 0.613351 + 0.157946I
b = 0.550514 + 0.187402I
0.806279I 0. + 8.22652I
u = 1.31322 + 1.08050I
a = 0.888779 0.031915I
b = 1.081500 + 0.798609I
2.49243 + 8.64801I 4.04126 7.50135I
u = 1.31322 1.08050I
a = 0.888779 + 0.031915I
b = 1.081500 0.798609I
2.49243 8.64801I 4.04126 + 7.50135I
30
VIII. I
u
8
=
ha
3
u
2
2a
2
u
2
+· · ·a+1, a
2
u
2
u
2
a+bu+au+b+a, u
3
a
2
u
3
a+auu1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
7
=
a
b
a
8
=
b + a
b
a
2
=
a
3
u
2
2a
2
u
2
+ 2a
2
u + u
2
a b
2
+ a
2
2au a + 1
a
3
u
2
a
2
u
2
+ a
2
u b
2
+ a
2
au + u
a
9
=
a
2
u
2
u
2
a + au + b + 2a u 1
u
3
a u
3
+ b + u
a
10
=
a
2
u
a
2
u
2
+ u
2
a au a + u + 1
a
3
=
a
3
u
2
+ a
2
u
2
a
2
+ 1
a
3
u
2
a
2
u
2
+ a
2
u u
2
a + a
2
au + u
2
1
a
6
=
a
3
u
2
+ 2a
2
u
2
u
2
a + b + 2a
a
2
u
2
2u
2
a + u
2
+ b + a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
31
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
8
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
0 0
32
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
7
, c
9
9(u
4
3u
3
+ ··· 2u + 1)(u
4
+ u
3
2u 1)(u
10
7u
9
+ ··· 96u + 32)
· (u
10
+ 4u
9
+ ··· + 12u + 3)
2
· (3u
10
+ 6u
9
u
8
14u
7
8u
6
+ 10u
5
+ 11u
4
2u
3
5u
2
+ 1)
2
c
2
, c
4
, c
6
c
8
, c
10
9(u
4
u
3
+ 2u 1)(u
4
+ 3u
3
+ 4u
2
+ 2u + 1)
· ((u
10
4u
9
+ ··· 12u + 3)
2
)(u
10
+ 7u
9
+ ··· + 96u + 32)
· (3u
10
6u
9
u
8
+ 14u
7
8u
6
10u
5
+ 11u
4
+ 2u
3
5u
2
+ 1)
2
33
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
81(y
4
y
3
+ 2y
2
4y + 1)(y
4
y
3
+ 6y
2
+ 4y + 1)
· (y
10
+ 2y
9
+ 9y
8
+ 18y
7
+ 36y
6
+ 48y
5
+ 39y
4
+ 22y
3
5y
2
6y + 9)
2
· (y
10
+ 7y
9
+ ··· + 3584y + 1024)(9y
10
42y
9
+ ··· 10y + 1)
2
34