12n
0002
(K12n
0002
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 9 11 5 12 7 1 10
Solving Sequence
2,5
3 6
1,10
12 9 4 8 11 7
c
2
c
5
c
1
c
12
c
9
c
4
c
8
c
11
c
7
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.50952 × 10
19
u
57
1.17965 × 10
20
u
56
+ ··· + 8.90580 × 10
18
b 7.29842 × 10
18
,
1.00393 × 10
18
u
57
+ 3.12591 × 10
18
u
56
+ ··· + 4.45290 × 10
18
a + 3.47008 × 10
18
, u
58
8u
57
+ ··· 2u + 1i
I
u
2
= h−a
5
+ a
4
u + 5a
3
u + 5a
3
+ a
2
5au + 3b 3a + u + 1, a
6
4a
4
u 4a
4
+ a
3
+ 4a
2
u + 1, u
2
+ u + 1i
I
u
3
= h−u
3
+ u
2
+ b 1, u
4
u
3
+ 2u
2
+ a, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.51×10
19
u
57
1.18×10
20
u
56
+· · ·+8.91×10
18
b7.30×10
18
, 1.00×
10
18
u
57
+3.13×10
18
u
56
+· · ·+4.45×10
18
a+3.47×10
18
, u
58
8u
57
+· · ·2u+1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
a
1
=
u
2
+ 1
u
4
a
10
=
0.225455u
57
0.701994u
56
+ ··· 6.72656u 0.779286
1.69498u
57
+ 13.2459u
56
+ ··· 1.76418u + 0.819513
a
12
=
0.0574055u
57
0.455661u
56
+ ··· + 3.20301u + 1.10290
0.153541u
57
1.95463u
56
+ ··· + 0.280763u 0.208388
a
9
=
0.439374u
57
+ 3.08799u
56
+ ··· 7.87466u 0.429764
1.22559u
57
+ 7.69945u
56
+ ··· + 0.535607u 0.892059
a
4
=
u
4
+ u
2
+ 1
u
4
a
8
=
0.439374u
57
+ 3.08799u
56
+ ··· 7.87466u 0.429764
2.54116u
57
+ 16.5796u
56
+ ··· + 0.950230u 1.31906
a
11
=
0.144303u
57
+ 0.234853u
56
+ ··· + 4.42130u + 0.826807
0.637447u
57
5.42639u
56
+ ··· + 1.41189u 0.810401
a
7
=
u
2
1
0.0312500u
57
+ 0.218750u
56
+ ··· + 1.03125u
2
+ 1.96875u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11962378823504572851
4452900487453949456
u
57
51305067713791607137
2226450243726974728
u
56
+ ··· +
42176209722625714401
4452900487453949456
u
11662141419335258151
2226450243726974728
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 36u
57
+ ··· + 38u + 1
c
2
, c
5
u
58
+ 8u
57
+ ··· + 2u + 1
c
3
u
58
8u
57
+ ··· 10u + 1
c
4
, c
8
u
58
+ 2u
57
+ ··· + 22528u
2
4096
c
6
u
58
4u
57
+ ··· + 2u 1
c
7
, c
10
u
58
+ 3u
57
+ ··· + 96u + 32
c
9
, c
12
u
58
+ 8u
57
+ ··· 8u 1
c
11
u
58
24u
57
+ ··· + 160u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
20y
57
+ ··· + 1622y + 1
c
2
, c
5
y
58
+ 36y
57
+ ··· + 38y + 1
c
3
y
58
76y
57
+ ··· + 38y + 1
c
4
, c
8
y
58
70y
57
+ ··· 184549376y + 16777216
c
6
y
58
76y
57
+ ··· + 34y + 1
c
7
, c
10
y
58
39y
57
+ ··· 11776y + 1024
c
9
, c
12
y
58
24y
57
+ ··· + 160y + 1
c
11
y
58
+ 28y
57
+ ··· 15092y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.275952 + 0.968192I
a = 0.000155 + 0.297955I
b = 1.10303 1.31729I
0.96404 + 7.38208I 0
u = 0.275952 0.968192I
a = 0.000155 0.297955I
b = 1.10303 + 1.31729I
0.96404 7.38208I 0
u = 0.978634 + 0.050547I
a = 0.55182 + 2.57301I
b = 0.022208 0.782754I
4.75178 2.65507I 0
u = 0.978634 0.050547I
a = 0.55182 2.57301I
b = 0.022208 + 0.782754I
4.75178 + 2.65507I 0
u = 1.023510 + 0.155528I
a = 0.27153 2.55040I
b = 0.021646 + 0.911291I
8.49450 9.39894I 0
u = 1.023510 0.155528I
a = 0.27153 + 2.55040I
b = 0.021646 0.911291I
8.49450 + 9.39894I 0
u = 1.039610 + 0.094873I
a = 0.51869 + 1.62894I
b = 0.260631 0.513525I
10.45060 3.04051I 0
u = 1.039610 0.094873I
a = 0.51869 1.62894I
b = 0.260631 + 0.513525I
10.45060 + 3.04051I 0
u = 0.955917
a = 1.03957
b = 1.17742
3.08584 0
u = 0.171249 + 1.030670I
a = 0.063866 + 0.965609I
b = 1.090800 + 0.593842I
0.92134 2.15292I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.171249 1.030670I
a = 0.063866 0.965609I
b = 1.090800 0.593842I
0.92134 + 2.15292I 0
u = 0.093713 + 0.946838I
a = 0.553562 0.684632I
b = 1.49296 + 1.41946I
0.65102 + 1.70576I 0
u = 0.093713 0.946838I
a = 0.553562 + 0.684632I
b = 1.49296 1.41946I
0.65102 1.70576I 0
u = 0.385585 + 0.867994I
a = 0.485247 + 0.372815I
b = 0.175174 + 0.510497I
0.35129 1.66089I 0
u = 0.385585 0.867994I
a = 0.485247 0.372815I
b = 0.175174 0.510497I
0.35129 + 1.66089I 0
u = 0.505582 + 0.803238I
a = 2.09011 2.61641I
b = 2.09154 2.96921I
1.74781 1.62369I 0. + 24.7327I
u = 0.505582 0.803238I
a = 2.09011 + 2.61641I
b = 2.09154 + 2.96921I
1.74781 + 1.62369I 0. 24.7327I
u = 0.561420 + 0.898597I
a = 2.07464 + 1.60753I
b = 1.43908 + 1.62628I
1.38531 2.69246I 0
u = 0.561420 0.898597I
a = 2.07464 1.60753I
b = 1.43908 1.62628I
1.38531 + 2.69246I 0
u = 0.726204 + 0.589006I
a = 0.00616 + 1.68117I
b = 0.547028 + 1.145170I
0.969194 + 0.999280I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.726204 0.589006I
a = 0.00616 1.68117I
b = 0.547028 1.145170I
0.969194 0.999280I 0
u = 0.175532 + 1.051230I
a = 0.428231 0.504967I
b = 0.019179 0.580968I
3.55927 + 2.47567I 0
u = 0.175532 1.051230I
a = 0.428231 + 0.504967I
b = 0.019179 + 0.580968I
3.55927 2.47567I 0
u = 0.024346 + 0.878987I
a = 1.212630 + 0.073534I
b = 2.14746 + 0.60990I
1.218520 0.673498I 4.18882 1.05925I
u = 0.024346 0.878987I
a = 1.212630 0.073534I
b = 2.14746 0.60990I
1.218520 + 0.673498I 4.18882 + 1.05925I
u = 0.704127 + 0.981644I
a = 1.74849 + 0.22678I
b = 1.64792 0.60728I
2.05852 6.41903I 0
u = 0.704127 0.981644I
a = 1.74849 0.22678I
b = 1.64792 + 0.60728I
2.05852 + 6.41903I 0
u = 0.692017 + 0.375664I
a = 0.372198 0.642161I
b = 0.920888 0.097592I
0.81151 3.99437I 2.30538 + 5.50801I
u = 0.692017 0.375664I
a = 0.372198 + 0.642161I
b = 0.920888 + 0.097592I
0.81151 + 3.99437I 2.30538 5.50801I
u = 0.629338 + 1.046620I
a = 0.677631 0.327862I
b = 0.848161 + 0.573228I
2.61151 1.02917I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.629338 1.046620I
a = 0.677631 + 0.327862I
b = 0.848161 0.573228I
2.61151 + 1.02917I 0
u = 0.171554 + 1.234280I
a = 0.966951 0.171109I
b = 1.74065 1.48643I
6.43951 0.95824I 0
u = 0.171554 1.234280I
a = 0.966951 + 0.171109I
b = 1.74065 + 1.48643I
6.43951 + 0.95824I 0
u = 0.463795 + 1.173060I
a = 0.245701 0.546846I
b = 0.27203 1.99888I
4.70507 + 4.20146I 0
u = 0.463795 1.173060I
a = 0.245701 + 0.546846I
b = 0.27203 + 1.99888I
4.70507 4.20146I 0
u = 0.276279 + 1.243530I
a = 0.500340 0.211080I
b = 1.57432 + 1.01324I
5.50368 7.01216I 0
u = 0.276279 1.243530I
a = 0.500340 + 0.211080I
b = 1.57432 1.01324I
5.50368 + 7.01216I 0
u = 0.305286 + 0.606062I
a = 0.384294 + 0.040597I
b = 0.905016 1.068230I
0.07617 4.63797I 3.02109 + 8.51541I
u = 0.305286 0.606062I
a = 0.384294 0.040597I
b = 0.905016 + 1.068230I
0.07617 + 4.63797I 3.02109 8.51541I
u = 0.646890
a = 1.12299
b = 0.559207
1.53774 8.16170
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.490058 + 1.298210I
a = 0.386776 + 0.469667I
b = 0.38414 + 2.46629I
7.08177 + 5.14263I 0
u = 0.490058 1.298210I
a = 0.386776 0.469667I
b = 0.38414 2.46629I
7.08177 5.14263I 0
u = 0.463084 + 1.320050I
a = 1.47034 0.97801I
b = 3.91851 1.65445I
9.03269 + 2.43239I 0
u = 0.463084 1.320050I
a = 1.47034 + 0.97801I
b = 3.91851 + 1.65445I
9.03269 2.43239I 0
u = 0.520231 + 1.298750I
a = 1.84530 + 0.28310I
b = 4.74633 + 0.27848I
8.59701 + 8.01455I 0
u = 0.520231 1.298750I
a = 1.84530 0.28310I
b = 4.74633 0.27848I
8.59701 8.01455I 0
u = 0.581889 + 1.286040I
a = 1.72412 0.78764I
b = 4.59705 1.31483I
11.9798 + 15.1518I 0
u = 0.581889 1.286040I
a = 1.72412 + 0.78764I
b = 4.59705 + 1.31483I
11.9798 15.1518I 0
u = 0.55851 + 1.31422I
a = 1.055310 + 0.777623I
b = 2.64117 + 1.02259I
14.2321 + 8.7482I 0
u = 0.55851 1.31422I
a = 1.055310 0.777623I
b = 2.64117 1.02259I
14.2321 8.7482I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.38902 + 1.37780I
a = 1.64061 + 0.55483I
b = 4.47101 + 0.66773I
13.4742 4.4404I 0
u = 0.38902 1.37780I
a = 1.64061 0.55483I
b = 4.47101 0.66773I
13.4742 + 4.4404I 0
u = 0.44158 + 1.37511I
a = 1.169000 0.047468I
b = 3.16209 0.19464I
15.1541 + 2.2033I 0
u = 0.44158 1.37511I
a = 1.169000 + 0.047468I
b = 3.16209 + 0.19464I
15.1541 2.2033I 0
u = 0.342722 + 0.311153I
a = 1.206810 + 0.383647I
b = 0.526147 + 0.412647I
1.48988 0.34469I 6.13134 + 1.29951I
u = 0.342722 0.311153I
a = 1.206810 0.383647I
b = 0.526147 0.412647I
1.48988 + 0.34469I 6.13134 1.29951I
u = 0.096823 + 0.143742I
a = 4.23922 1.64875I
b = 0.980677 + 0.184228I
1.73915 0.71529I 3.95862 + 0.54158I
u = 0.096823 0.143742I
a = 4.23922 + 1.64875I
b = 0.980677 0.184228I
1.73915 + 0.71529I 3.95862 0.54158I
10
II.
I
u
2
= ha
4
u + 5a
3
u + · · · 3a + 1, a
6
4a
4
u 4a
4
+ a
3
+ 4a
2
u + 1, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u + 1
a
6
=
u
u
a
1
=
u
u
a
10
=
a
1
3
a
4
u
5
3
a
3
u + ··· + a
1
3
a
12
=
1
3
a
5
u +
2
3
a
3
u + ··· +
1
3
a
2
1
3
a
1
3
a
5
u +
1
3
a
4
u + ···
1
3
a
2
3
a
9
=
0
1
3
a
4
u
7
3
a
3
u + ··· +
7
3
a
2
5
3
a
4
=
0
u
a
8
=
0
1
3
a
4
u
7
3
a
3
u + ··· +
7
3
a
2
5
3
a
11
=
2
3
a
5
u +
7
3
a
3
u + ··· +
5
3
a
2
+
4
3
a
2
3
a
5
u +
1
3
a
4
u + ··· +
4
3
a
2
3
a
7
=
u
a
5
+ a
4
u 3a
3
u 3a
3
+ 5a
2
+ 2au u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5a
5
u + 2a
5
+ a
4
u 6a
3
u + 9a
3
+ 5a
2
u + 6a
2
2au 6a + 2u 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
4
, c
8
u
12
c
6
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
7
, c
12
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
9
, c
10
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
11
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
6
c
4
, c
8
y
12
c
6
, c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
7
, c
9
, c
10
c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.984649 + 0.174545I
b = 0.036219 0.476146I
7.72290I 0.57335 + 8.68103I
u = 0.500000 + 0.866025I
a = 0.643485 0.765459I
b = 0.69657 1.97490I
3.66314I 3.68173 0.75872I
u = 0.500000 + 0.866025I
a = 0.532492 0.210196I
b = 0.171113 0.913331I
1.89061 1.10558I 7.73749 + 2.70506I
u = 0.500000 + 0.866025I
a = 0.448281 + 0.356054I
b = 0.341341 + 0.317450I
1.89061 2.95419I 4.53097 + 3.97184I
u = 0.500000 + 0.866025I
a = 1.62479 0.64137I
b = 0.867745 + 0.078785I
1.89061 1.10558I 0.765607 + 0.616236I
u = 0.500000 + 0.866025I
a = 1.36783 + 1.08642I
b = 1.61298 + 2.10212I
1.89061 2.95419I 4.61123 + 3.83711I
u = 0.500000 0.866025I
a = 0.643485 + 0.765459I
b = 0.69657 + 1.97490I
7.72290I 0.57335 8.68103I
u = 0.500000 0.866025I
a = 0.984649 0.174545I
b = 0.036219 + 0.476146I
3.66314I 3.68173 + 0.75872I
u = 0.500000 0.866025I
a = 0.532492 + 0.210196I
b = 0.171113 + 0.913331I
1.89061 + 1.10558I 7.73749 2.70506I
u = 0.500000 0.866025I
a = 0.448281 0.356054I
b = 0.341341 0.317450I
1.89061 + 2.95419I 4.53097 3.97184I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 1.62479 + 0.64137I
b = 0.867745 0.078785I
1.89061 + 1.10558I 0.765607 0.616236I
u = 0.500000 0.866025I
a = 1.36783 1.08642I
b = 1.61298 2.10212I
1.89061 + 2.95419I 4.61123 3.83711I
15
III. I
u
3
= h−u
3
+ u
2
+ b 1, u
4
u
3
+ 2u
2
+ a, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
a
1
=
u
2
+ 1
u
4
a
10
=
u
4
+ u
3
2u
2
u
3
u
2
+ 1
a
12
=
u
4
+ u
3
u
2
+ 1
u
4
+ u
3
u
2
+ 1
a
9
=
u
2
1
u
4
a
4
=
u
4
+ u
2
+ 1
u
4
a
8
=
u
2
1
2u
4
+ u
2
a
11
=
u
4
+ u
3
2u
2
u
3
u
2
+ 1
a
7
=
u
2
1
2u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 3u
3
4u
2
+ 8u 3
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
3u
4
+ 4u
3
u
2
u + 1
c
2
u
5
u
4
+ 2u
3
u
2
+ u 1
c
3
, c
4
u
5
+ u
4
2u
3
u
2
+ u 1
c
5
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
6
u
5
5u
4
+ 8u
3
3u
2
u 1
c
7
, c
10
u
5
c
8
u
5
u
4
2u
3
+ u
2
+ u + 1
c
9
, c
11
(u + 1)
5
c
12
(u 1)
5
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
2
, c
5
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
3
, c
4
, c
8
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
7
, c
10
y
5
c
9
, c
11
, c
12
(y 1)
5
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.76766 + 0.21690I
b = 2.21033 + 0.28529I
1.31583 1.53058I 1.50865 + 9.87103I
u = 0.339110 0.822375I
a = 1.76766 0.21690I
b = 2.21033 0.28529I
1.31583 + 1.53058I 1.50865 9.87103I
u = 0.766826
a = 1.07090
b = 0.862888
0.756147 3.17260
u = 0.455697 + 1.200150I
a = 0.267792 0.471915I
b = 0.35822 2.07480I
4.22763 + 4.40083I 0.92237 5.80708I
u = 0.455697 1.200150I
a = 0.267792 + 0.471915I
b = 0.35822 + 2.07480I
4.22763 4.40083I 0.92237 + 5.80708I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
5
3u
4
+ ··· u + 1)(u
58
+ 36u
57
+ ··· + 38u + 1)
c
2
((u
2
+ u + 1)
6
)(u
5
u
4
+ ··· + u 1)(u
58
+ 8u
57
+ ··· + 2u + 1)
c
3
((u
2
u + 1)
6
)(u
5
+ u
4
+ ··· + u 1)(u
58
8u
57
+ ··· 10u + 1)
c
4
u
12
(u
5
+ u
4
+ ··· + u 1)(u
58
+ 2u
57
+ ··· + 22528u
2
4096)
c
5
((u
2
u + 1)
6
)(u
5
+ u
4
+ ··· + u + 1)(u
58
+ 8u
57
+ ··· + 2u + 1)
c
6
(u
5
5u
4
+ 8u
3
3u
2
u 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
58
4u
57
+ ··· + 2u 1)
c
7
u
5
(u
6
+ u
5
+ ··· + u + 1)
2
(u
58
+ 3u
57
+ ··· + 96u + 32)
c
8
u
12
(u
5
u
4
+ ··· + u + 1)(u
58
+ 2u
57
+ ··· + 22528u
2
4096)
c
9
((u + 1)
5
)(u
6
u
5
+ ··· u + 1)
2
(u
58
+ 8u
57
+ ··· 8u 1)
c
10
u
5
(u
6
u
5
+ ··· u + 1)
2
(u
58
+ 3u
57
+ ··· + 96u + 32)
c
11
(u + 1)
5
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
· (u
58
24u
57
+ ··· + 160u + 1)
c
12
((u 1)
5
)(u
6
+ u
5
+ ··· + u + 1)
2
(u
58
+ 8u
57
+ ··· 8u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
6
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
58
20y
57
+ ··· + 1622y + 1)
c
2
, c
5
((y
2
+ y + 1)
6
)(y
5
+ 3y
4
+ ··· y 1)(y
58
+ 36y
57
+ ··· + 38y + 1)
c
3
(y
2
+ y + 1)
6
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
58
76y
57
+ ··· + 38y + 1)
c
4
, c
8
y
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
58
70y
57
+ ··· 184549376y + 16777216)
c
6
(y
5
9y
4
+ 32y
3
35y
2
5y 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
58
76y
57
+ ··· + 34y + 1)
c
7
, c
10
y
5
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
58
39y
57
+ ··· 11776y + 1024)
c
9
, c
12
(y 1)
5
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
58
24y
57
+ ··· + 160y + 1)
c
11
(y 1)
5
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
58
+ 28y
57
+ ··· 15092y + 1)
21