12n
0008
(K12n
0008
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 9 11 5 12 1 7 10
Solving Sequence
3,5
2 6
1,10
11 12 9 4 8 7
c
2
c
5
c
1
c
10
c
12
c
9
c
4
c
8
c
7
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−40170837860333u
44
+ 273898398784184u
43
+ ··· + 57194726799376b 67982681260688,
19829193212635u
44
141090112593855u
43
+ ··· + 57194726799376a + 390935602889337,
u
45
7u
44
+ ··· + 13u 1i
I
u
2
= h−4a
4
u 2a
3
u 2a
3
+ 15a
2
+ 15au + 5b 3u 3, a
5
+ 4a
3
u + 4a
3
5a
2
2au + u + 1, u
2
+ u + 1i
I
u
3
= hu
2
+ b u + 1, u
4
+ u
3
u
2
+ a + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.02 × 10
13
u
44
+ 2.74 × 10
14
u
43
+ · · · + 5.72 × 10
13
b 6.80 ×
10
13
, 1.98 × 10
13
u
44
1.41 × 10
14
u
43
+ · · · + 5.72 × 10
13
a + 3.91 ×
10
14
, u
45
7u
44
+ · · · + 13u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
0.346696u
44
+ 2.46684u
43
+ ··· + 26.5461u 6.83517
0.702352u
44
4.78888u
43
+ ··· 4.12647u + 1.18862
a
11
=
0.557267u
44
+ 3.84559u
43
+ ··· + 30.7805u 8.13179
0.738824u
44
5.11904u
43
+ ··· 4.10862u + 1.16824
a
12
=
0.948786u
44
6.63640u
43
+ ··· 38.0499u + 9.08094
0.352063u
44
+ 2.54967u
43
+ ··· + 10.9763u 1.85015
a
9
=
1.14775u
44
8.03211u
43
+ ··· 29.6955u + 4.33683
0.0391055u
44
+ 0.648251u
43
+ ··· + 12.0682u 1.19731
a
4
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
a
8
=
1.14775u
44
8.03211u
43
+ ··· 29.6955u + 4.33683
0.256025u
44
1.48232u
43
+ ··· + 10.9482u 1.19944
a
7
=
u
2
1
1
16
u
43
3
8
u
42
+ ··· +
11
4
u
1
16
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
60972380652257
57194726799376
u
44
218749636382387
28597363399688
u
43
+ ··· +
1862967060953113
57194726799376
u
208231471984261
28597363399688
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
45
+ 29u
44
+ ··· + 23u 1
c
2
, c
5
u
45
+ 7u
44
+ ··· + 13u + 1
c
3
u
45
7u
44
+ ··· + 3u + 1
c
4
, c
8
u
45
+ 2u
44
+ ··· + 3072u
2
1024
c
6
u
45
4u
44
+ ··· + 2u 1
c
7
, c
11
u
45
3u
44
+ ··· + 32u 32
c
9
, c
10
, c
12
u
45
8u
44
+ ··· 8u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
45
19y
44
+ ··· + 3799y 1
c
2
, c
5
y
45
+ 29y
44
+ ··· + 23y 1
c
3
y
45
67y
44
+ ··· + 23y 1
c
4
, c
8
y
45
60y
44
+ ··· + 6291456y 1048576
c
6
y
45
62y
44
+ ··· + 14y 1
c
7
, c
11
y
45
+ 39y
44
+ ··· 4608y 1024
c
9
, c
10
, c
12
y
45
50y
44
+ ··· + 70y
2
1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.448428 + 0.886782I
a = 3.29054 2.26057I
b = 0.04313 3.34261I
1.93664 1.84719I 16.6318 + 21.5784I
u = 0.448428 0.886782I
a = 3.29054 + 2.26057I
b = 0.04313 + 3.34261I
1.93664 + 1.84719I 16.6318 21.5784I
u = 1.028510 + 0.052980I
a = 0.875035 0.619833I
b = 0.792997 + 0.140103I
8.08739 3.08320I 6.91743 + 2.52914I
u = 1.028510 0.052980I
a = 0.875035 + 0.619833I
b = 0.792997 0.140103I
8.08739 + 3.08320I 6.91743 2.52914I
u = 0.141103 + 1.020830I
a = 0.123326 0.575048I
b = 0.602098 0.954633I
1.88299 + 2.68710I 8.64703 3.04236I
u = 0.141103 1.020830I
a = 0.123326 + 0.575048I
b = 0.602098 + 0.954633I
1.88299 2.68710I 8.64703 + 3.04236I
u = 1.04389
a = 3.48098
b = 2.56398
10.3675 7.74840
u = 0.814101 + 0.473442I
a = 1.85931 0.05637I
b = 1.69396 + 0.05742I
6.36217 1.58930I 8.13248 + 2.19731I
u = 0.814101 0.473442I
a = 1.85931 + 0.05637I
b = 1.69396 0.05742I
6.36217 + 1.58930I 8.13248 2.19731I
u = 0.321638 + 1.027370I
a = 0.357029 0.516807I
b = 0.721264 + 1.082480I
6.92269 + 6.44252I 13.9889 5.4327I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.321638 1.027370I
a = 0.357029 + 0.516807I
b = 0.721264 1.082480I
6.92269 6.44252I 13.9889 + 5.4327I
u = 1.074090 + 0.154235I
a = 2.72392 + 0.96068I
b = 2.30814 + 0.29423I
15.4421 7.7641I 8.55026 + 3.19844I
u = 1.074090 0.154235I
a = 2.72392 0.96068I
b = 2.30814 0.29423I
15.4421 + 7.7641I 8.55026 3.19844I
u = 0.558842 + 0.933277I
a = 1.240750 0.138767I
b = 0.96715 + 1.42473I
0.77833 2.85163I 9.27214 + 0.I
u = 0.558842 0.933277I
a = 1.240750 + 0.138767I
b = 0.96715 1.42473I
0.77833 + 2.85163I 9.27214 + 0.I
u = 0.038638 + 1.093140I
a = 0.764813 0.243323I
b = 1.73664 1.54360I
4.80137 + 0.66249I 10.84717 + 0.I
u = 0.038638 1.093140I
a = 0.764813 + 0.243323I
b = 1.73664 + 1.54360I
4.80137 0.66249I 10.84717 + 0.I
u = 0.095599 + 1.102010I
a = 0.691464 + 0.377467I
b = 0.104979 + 0.147687I
3.59727 1.96898I 11.38503 + 2.89411I
u = 0.095599 1.102010I
a = 0.691464 0.377467I
b = 0.104979 0.147687I
3.59727 + 1.96898I 11.38503 2.89411I
u = 0.464257 + 0.743525I
a = 0.128607 + 0.894701I
b = 0.879012 + 0.408581I
0.10245 1.42024I 3.50008 + 5.75375I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.464257 0.743525I
a = 0.128607 0.894701I
b = 0.879012 0.408581I
0.10245 + 1.42024I 3.50008 5.75375I
u = 0.840032
a = 1.01212
b = 0.718511
3.18298 0.134470
u = 0.209858 + 0.761572I
a = 0.588066 + 0.563430I
b = 0.557407 + 0.666651I
0.270200 1.317790I 2.14262 + 3.99951I
u = 0.209858 0.761572I
a = 0.588066 0.563430I
b = 0.557407 0.666651I
0.270200 + 1.317790I 2.14262 3.99951I
u = 0.715937 + 1.055430I
a = 0.47884 + 1.81232I
b = 1.310670 + 0.236185I
7.98005 4.06553I 0
u = 0.715937 1.055430I
a = 0.47884 1.81232I
b = 1.310670 0.236185I
7.98005 + 4.06553I 0
u = 0.414289 + 0.552563I
a = 0.545658 0.831909I
b = 0.997622 + 0.175155I
5.50892 3.28114I 8.73853 + 6.07709I
u = 0.414289 0.552563I
a = 0.545658 + 0.831909I
b = 0.997622 0.175155I
5.50892 + 3.28114I 8.73853 6.07709I
u = 0.456920 + 1.233790I
a = 0.146367 0.696106I
b = 0.998812 0.254559I
6.87697 + 4.62897I 0
u = 0.456920 1.233790I
a = 0.146367 + 0.696106I
b = 0.998812 + 0.254559I
6.87697 4.62897I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.236201 + 1.315500I
a = 0.223845 + 0.997497I
b = 2.56560 + 0.53987I
11.96940 4.68670I 0
u = 0.236201 1.315500I
a = 0.223845 0.997497I
b = 2.56560 0.53987I
11.96940 + 4.68670I 0
u = 0.53792 + 1.32330I
a = 0.520780 + 0.416398I
b = 1.64420 + 0.02216I
12.0273 + 8.6721I 0
u = 0.53792 1.32330I
a = 0.520780 0.416398I
b = 1.64420 0.02216I
12.0273 8.6721I 0
u = 0.47555 + 1.35442I
a = 0.116010 + 0.860979I
b = 0.012680 + 0.444909I
12.52320 + 2.24438I 0
u = 0.47555 1.35442I
a = 0.116010 0.860979I
b = 0.012680 0.444909I
12.52320 2.24438I 0
u = 0.60027 + 1.30875I
a = 1.41525 1.67542I
b = 3.06355 0.12659I
19.0180 + 13.7371I 0
u = 0.60027 1.30875I
a = 1.41525 + 1.67542I
b = 3.06355 + 0.12659I
19.0180 13.7371I 0
u = 0.51317 + 1.34856I
a = 0.98613 + 2.21993I
b = 3.05558 + 1.18362I
14.5875 + 5.5390I 0
u = 0.51317 1.34856I
a = 0.98613 2.21993I
b = 3.05558 1.18362I
14.5875 5.5390I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.40664 + 1.42221I
a = 0.22163 1.91263I
b = 1.91377 1.51963I
18.8970 2.5007I 0
u = 0.40664 1.42221I
a = 0.22163 + 1.91263I
b = 1.91377 + 1.51963I
18.8970 + 2.5007I 0
u = 0.027627 + 0.285904I
a = 1.54121 + 0.47713I
b = 0.419324 + 0.349696I
0.299097 1.132870I 4.25483 + 6.05161I
u = 0.027627 0.285904I
a = 1.54121 0.47713I
b = 0.419324 0.349696I
0.299097 + 1.132870I 4.25483 6.05161I
u = 0.129774
a = 5.18021
b = 1.04208
2.19508 3.54080
9
II. I
u
2
=
h−4a
4
u 2a
3
u +· · ·+ 15a
2
3, a
5
+4a
3
u +4a
3
5a
2
2au + u+1, u
2
+u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u 1
a
6
=
u
u + 1
a
1
=
u
u 1
a
10
=
a
4
5
a
4
u +
2
5
a
3
u + ··· 3a
2
+
3
5
a
11
=
4
5
a
4
+
2
5
a
3
u 3a
2
u 3a
2
+ 3a +
3
5
u
8
5
a
4
u +
4
5
a
3
u + ··· 6a
2
+
6
5
a
12
=
2
5
a
4
+
1
5
a
3
u 2a
2
u 2a
2
+ a
1
5
u
1
5
a
4
u
3
5
a
3
u + ···
3
5
a
3
2
5
a
9
=
0
1
5
a
4
u
3
5
a
3
u + ···
3
5
a
3
2
5
a
4
=
0
u
a
8
=
0
1
5
a
4
u
3
5
a
3
u + ···
3
5
a
3
2
5
a
7
=
u
2
5
a
4
u
6
5
a
3
u + ···
6
5
a
3
+
6
5
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
14
5
a
4
u 3a
4
7
5
a
3
u
2
5
a
3
15a
2
u 3a
2
+ 11au + 16a +
27
5
u
33
5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
8
u
10
c
6
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
7
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
9
, c
10
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
8
y
10
c
6
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
7
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
9
, c
10
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.012010 0.734701I
b = 0.768927 0.124653I
5.87256 + 2.37095I 11.57979 + 0.88917I
u = 0.500000 + 0.866025I
a = 0.130268 1.243770I
b = 0.492416 + 0.603584I
5.87256 6.43072I 6.27578 + 5.55522I
u = 0.500000 + 0.866025I
a = 0.364485 0.347423I
b = 1.114310 + 0.148503I
0.329100 0.499304I 6.44749 1.44665I
u = 0.500000 + 0.866025I
a = 0.483119 + 0.141942I
b = 0.685764 0.890773I
0.32910 3.56046I 2.59686 + 8.38554I
u = 0.500000 + 0.866025I
a = 1.26091 + 2.18395I
b = 0.652039 + 1.129360I
2.40108 2.02988I 7.10008 + 5.66929I
u = 0.500000 0.866025I
a = 1.012010 + 0.734701I
b = 0.768927 + 0.124653I
5.87256 2.37095I 11.57979 0.88917I
u = 0.500000 0.866025I
a = 0.130268 + 1.243770I
b = 0.492416 0.603584I
5.87256 + 6.43072I 6.27578 5.55522I
u = 0.500000 0.866025I
a = 0.364485 + 0.347423I
b = 1.114310 0.148503I
0.329100 + 0.499304I 6.44749 + 1.44665I
u = 0.500000 0.866025I
a = 0.483119 0.141942I
b = 0.685764 + 0.890773I
0.32910 + 3.56046I 2.59686 8.38554I
u = 0.500000 0.866025I
a = 1.26091 2.18395I
b = 0.652039 1.129360I
2.40108 + 2.02988I 7.10008 5.66929I
13
III. I
u
3
= hu
2
+ b u + 1, u
4
+ u
3
u
2
+ a + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
u
4
u
3
+ u
2
1
u
2
+ u 1
a
11
=
u
4
u
3
+ 2u
2
u 1
a
12
=
u
4
u
3
+ 2u
2
u 1
a
9
=
u
2
1
u
2
a
4
=
u
4
+ u
2
+ 1
u
4
u
3
+ u
2
+ 1
a
8
=
u
2
1
u
4
a
7
=
u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 5u
3
4u
2
9
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
3u
4
+ 4u
3
u
2
u + 1
c
2
u
5
u
4
+ 2u
3
u
2
+ u 1
c
3
, c
4
u
5
+ u
4
2u
3
u
2
+ u 1
c
5
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
6
u
5
5u
4
+ 8u
3
3u
2
u 1
c
7
, c
11
u
5
c
8
u
5
u
4
2u
3
+ u
2
+ u + 1
c
9
, c
10
(u 1)
5
c
12
(u + 1)
5
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
2
, c
5
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
3
, c
4
, c
8
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
y
5
9y
4
+ 32y
3
35y
2
5y 1
c
7
, c
11
y
5
c
9
, c
10
, c
12
(y 1)
5
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 2.20635 + 0.34085I
b = 0.77780 + 1.38013I
1.97403 1.53058I 3.52158 1.00973I
u = 0.339110 0.822375I
a = 2.20635 0.34085I
b = 0.77780 1.38013I
1.97403 + 1.53058I 3.52158 + 1.00973I
u = 0.766826
a = 0.517119
b = 0.821196
4.04602 10.1350
u = 0.455697 + 1.200150I
a = 0.035087 0.621896I
b = 0.688402 + 0.106340I
7.51750 + 4.40083I 14.4110 1.1901I
u = 0.455697 1.200150I
a = 0.035087 + 0.621896I
b = 0.688402 0.106340I
7.51750 4.40083I 14.4110 + 1.1901I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
5
3u
4
+ ··· u + 1)(u
45
+ 29u
44
+ ··· + 23u 1)
c
2
((u
2
+ u + 1)
5
)(u
5
u
4
+ ··· + u 1)(u
45
+ 7u
44
+ ··· + 13u + 1)
c
3
((u
2
u + 1)
5
)(u
5
+ u
4
+ ··· + u 1)(u
45
7u
44
+ ··· + 3u + 1)
c
4
u
10
(u
5
+ u
4
+ ··· + u 1)(u
45
+ 2u
44
+ ··· + 3072u
2
1024)
c
5
((u
2
u + 1)
5
)(u
5
+ u
4
+ ··· + u + 1)(u
45
+ 7u
44
+ ··· + 13u + 1)
c
6
(u
5
5u
4
+ 8u
3
3u
2
u 1)(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
· (u
45
4u
44
+ ··· + 2u 1)
c
7
u
5
(u
5
u
4
+ ··· + u 1)
2
(u
45
3u
44
+ ··· + 32u 32)
c
8
u
10
(u
5
u
4
+ ··· + u + 1)(u
45
+ 2u
44
+ ··· + 3072u
2
1024)
c
9
, c
10
((u 1)
5
)(u
5
+ u
4
+ ··· + u 1)
2
(u
45
8u
44
+ ··· 8u 1)
c
11
u
5
(u
5
+ u
4
+ ··· + u + 1)
2
(u
45
3u
44
+ ··· + 32u 32)
c
12
((u + 1)
5
)(u
5
u
4
+ ··· + u + 1)
2
(u
45
8u
44
+ ··· 8u 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
5
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
45
19y
44
+ ··· + 3799y 1)
c
2
, c
5
((y
2
+ y + 1)
5
)(y
5
+ 3y
4
+ ··· y 1)(y
45
+ 29y
44
+ ··· + 23y 1)
c
3
(y
2
+ y + 1)
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
45
67y
44
+ ··· + 23y 1)
c
4
, c
8
y
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
45
60y
44
+ ··· + 6291456y 1048576)
c
6
(y
5
9y
4
+ 32y
3
35y
2
5y 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
45
62y
44
+ ··· + 14y 1)
c
7
, c
11
y
5
(y
5
+ 3y
4
+ ··· y 1)
2
(y
45
+ 39y
44
+ ··· 4608y 1024)
c
9
, c
10
, c
12
((y 1)
5
)(y
5
5y
4
+ ··· y 1)
2
(y
45
50y
44
+ ··· + 70y
2
1)
19