12n
0009
(K12n
0009
)
A knot diagram
1
Linearized knot diagam
3 5 6 7 2 11 4 6 12 7 9 10
Solving Sequence
6,11 4,7
5 8 9 12 3 2 1 10
c
6
c
4
c
7
c
8
c
11
c
3
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.21642 × 10
44
u
44
9.65342 × 10
44
u
43
+ ··· + 5.80500 × 10
44
b + 4.56035 × 10
43
,
9.69683 × 10
44
u
44
+ 2.59441 × 10
45
u
43
+ ··· + 5.80500 × 10
44
a 1.42142 × 10
45
, u
45
3u
44
+ ··· 2u + 1i
I
u
2
= h−u
2
a + b, u
4
a + u
4
+ u
2
a + u
3
+ a
2
au + 3u
2
+ u + 2, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2.22×10
44
u
44
9.65×10
44
u
43
+· · ·+5.80×10
44
b+4.56×10
43
, 9.70×
10
44
u
44
+2.59×10
45
u
43
+· · ·+5.80×10
44
a1.42×10
45
, u
45
3u
44
+· · ·2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
1.67043u
44
4.46927u
43
+ ··· + 1.43251u + 2.44861
0.381812u
44
+ 1.66295u
43
+ ··· 2.28564u 0.0785591
a
7
=
1
u
2
a
5
=
1.52725u
44
3.73078u
43
+ ··· 0.266722u + 2.91206
0.353492u
44
+ 1.38147u
43
+ ··· 1.52456u 0.387507
a
8
=
0.180463u
44
0.229067u
43
+ ··· 0.106601u 0.509733
0.932433u
44
3.31426u
43
+ ··· + 3.71638u 1.49789
a
9
=
1.11290u
44
3.54332u
43
+ ··· + 3.60978u 2.00762
0.932433u
44
3.31426u
43
+ ··· + 3.71638u 1.49789
a
12
=
0.107422u
44
0.715021u
43
+ ··· + 1.62877u + 0.305097
0.795848u
44
2.98218u
43
+ ··· + 4.34562u 1.30977
a
3
=
1.28862u
44
2.80632u
43
+ ··· 0.853129u + 2.37005
0.381812u
44
+ 1.66295u
43
+ ··· 2.28564u 0.0785591
a
2
=
0.248367u
44
0.966971u
43
+ ··· + 5.08102u + 1.34780
0.418841u
44
+ 1.39898u
43
+ ··· 1.39587u + 0.364330
a
1
=
0.180463u
44
0.229067u
43
+ ··· 0.106601u 0.509733
0.611791u
44
+ 2.34940u
43
+ ··· 3.27220u + 1.18556
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.45073u
44
19.7307u
43
+ ··· + 14.2789u 6.88518
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
45
+ 28u
44
+ ··· + 13u 1
c
2
, c
5
u
45
+ 6u
44
+ ··· + u 1
c
3
u
45
6u
44
+ ··· + 11u 1
c
4
, c
7
u
45
+ 3u
44
+ ··· 2048u + 1024
c
6
, c
10
u
45
+ 3u
44
+ ··· 2u 1
c
8
u
45
+ 9u
44
+ ··· 305892u + 52489
c
9
, c
11
, c
12
u
45
+ 3u
44
+ ··· + 8u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
45
16y
44
+ ··· + 2813y 1
c
2
, c
5
y
45
+ 28y
44
+ ··· + 13y 1
c
3
y
45
60y
44
+ ··· + 13y 1
c
4
, c
7
y
45
+ 55y
44
+ ··· 12582912y 1048576
c
6
, c
10
y
45
+ 9y
44
+ ··· 8y 1
c
8
y
45
+ 37y
44
+ ··· 75656299984y 2755095121
c
9
, c
11
, c
12
y
45
35y
44
+ ··· 8y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.996119 + 0.282709I
a = 0.110387 + 0.980594I
b = 0.080579 + 0.175761I
1.42637 0.55806I 2.83426 0.60220I
u = 0.996119 0.282709I
a = 0.110387 0.980594I
b = 0.080579 0.175761I
1.42637 + 0.55806I 2.83426 + 0.60220I
u = 0.783242 + 0.506620I
a = 0.030126 0.893560I
b = 0.396180 + 0.324015I
3.24493 1.98845I 2.05742 + 2.49039I
u = 0.783242 0.506620I
a = 0.030126 + 0.893560I
b = 0.396180 0.324015I
3.24493 + 1.98845I 2.05742 2.49039I
u = 0.647911 + 0.616131I
a = 0.277858 + 0.505783I
b = 1.283800 0.505811I
0.49292 + 5.46151I 3.53146 8.21286I
u = 0.647911 0.616131I
a = 0.277858 0.505783I
b = 1.283800 + 0.505811I
0.49292 5.46151I 3.53146 + 8.21286I
u = 0.415458 + 1.074940I
a = 0.242176 + 0.556359I
b = 0.272242 + 0.056149I
1.16555 2.65109I 0.66724 + 3.06904I
u = 0.415458 1.074940I
a = 0.242176 0.556359I
b = 0.272242 0.056149I
1.16555 + 2.65109I 0.66724 3.06904I
u = 0.300364 + 0.770681I
a = 0.78986 1.26679I
b = 0.252806 0.197943I
0.37099 1.66366I 5.28694 + 1.76198I
u = 0.300364 0.770681I
a = 0.78986 + 1.26679I
b = 0.252806 + 0.197943I
0.37099 + 1.66366I 5.28694 1.76198I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.349037 + 1.204480I
a = 0.230921 0.225780I
b = 0.048432 + 0.642308I
6.11434 + 3.25836I 9.12554 6.20048I
u = 0.349037 1.204480I
a = 0.230921 + 0.225780I
b = 0.048432 0.642308I
6.11434 3.25836I 9.12554 + 6.20048I
u = 0.224318 + 0.711056I
a = 0.683426 + 0.176982I
b = 0.044045 0.249882I
0.376942 1.142080I 4.49943 + 6.11117I
u = 0.224318 0.711056I
a = 0.683426 0.176982I
b = 0.044045 + 0.249882I
0.376942 + 1.142080I 4.49943 6.11117I
u = 0.084183 + 0.723735I
a = 0.081939 0.906872I
b = 1.06476 + 1.42506I
4.88394 + 1.66123I 14.9262 3.5385I
u = 0.084183 0.723735I
a = 0.081939 + 0.906872I
b = 1.06476 1.42506I
4.88394 1.66123I 14.9262 + 3.5385I
u = 0.315867 + 0.654924I
a = 0.133646 + 1.369790I
b = 1.28532 1.81254I
3.26588 4.39540I 10.11446 + 8.40755I
u = 0.315867 0.654924I
a = 0.133646 1.369790I
b = 1.28532 + 1.81254I
3.26588 + 4.39540I 10.11446 8.40755I
u = 0.928999 + 0.912938I
a = 1.01128 + 1.05587I
b = 1.83892 + 0.11929I
3.43407 + 1.56417I 0
u = 0.928999 0.912938I
a = 1.01128 1.05587I
b = 1.83892 0.11929I
3.43407 1.56417I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.004980 + 0.829128I
a = 0.550201 1.282520I
b = 1.72749 + 0.74464I
8.38531 3.39936I 0
u = 1.004980 0.829128I
a = 0.550201 + 1.282520I
b = 1.72749 0.74464I
8.38531 + 3.39936I 0
u = 0.918792 + 0.952300I
a = 0.87791 1.25175I
b = 2.04722 + 0.30573I
7.36187 + 3.39187I 0
u = 0.918792 0.952300I
a = 0.87791 + 1.25175I
b = 2.04722 0.30573I
7.36187 3.39187I 0
u = 0.908778 + 0.983223I
a = 0.68380 + 1.36694I
b = 2.05663 0.74421I
3.22324 8.34361I 0
u = 0.908778 0.983223I
a = 0.68380 1.36694I
b = 2.05663 + 0.74421I
3.22324 + 8.34361I 0
u = 1.045050 + 0.865904I
a = 0.726480 + 1.134250I
b = 1.94070 0.29376I
11.88600 1.79976I 0
u = 1.045050 0.865904I
a = 0.726480 1.134250I
b = 1.94070 + 0.29376I
11.88600 + 1.79976I 0
u = 0.871713 + 1.077210I
a = 1.17410 0.85705I
b = 1.83482 0.04447I
7.57148 3.49814I 0
u = 0.871713 1.077210I
a = 1.17410 + 0.85705I
b = 1.83482 + 0.04447I
7.57148 + 3.49814I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.086870 + 0.893598I
a = 0.799128 0.940104I
b = 1.90700 0.12468I
7.31081 + 6.80058I 0
u = 1.086870 0.893598I
a = 0.799128 + 0.940104I
b = 1.90700 + 0.12468I
7.31081 6.80058I 0
u = 0.510690 + 1.315230I
a = 0.303054 0.084448I
b = 0.565338 0.295471I
4.91496 + 6.28302I 0
u = 0.510690 1.315230I
a = 0.303054 + 0.084448I
b = 0.565338 + 0.295471I
4.91496 6.28302I 0
u = 0.915870 + 1.077500I
a = 1.01938 + 1.15677I
b = 2.08407 0.22155I
11.1799 + 8.9578I 0
u = 0.915870 1.077500I
a = 1.01938 1.15677I
b = 2.08407 + 0.22155I
11.1799 8.9578I 0
u = 0.039688 + 0.578919I
a = 1.94846 + 0.78209I
b = 0.187471 0.759973I
0.66871 1.39964I 7.21689 + 5.45878I
u = 0.039688 0.578919I
a = 1.94846 0.78209I
b = 0.187471 + 0.759973I
0.66871 + 1.39964I 7.21689 5.45878I
u = 0.571271
a = 1.59952
b = 0.143336
2.17682 3.08930
u = 0.94832 + 1.08708I
a = 0.78152 1.29730I
b = 2.14143 + 0.52643I
6.6450 14.1896I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.94832 1.08708I
a = 0.78152 + 1.29730I
b = 2.14143 0.52643I
6.6450 + 14.1896I 0
u = 0.323389 + 0.438179I
a = 1.32309 1.43900I
b = 0.774207 + 0.940763I
0.07007 + 2.75890I 1.271024 0.509737I
u = 0.323389 0.438179I
a = 1.32309 + 1.43900I
b = 0.774207 0.940763I
0.07007 2.75890I 1.271024 + 0.509737I
u = 0.428186 + 0.132966I
a = 1.98389 + 7.20476I
b = 0.475066 + 0.996976I
1.97991 + 2.18754I 20.6628 + 4.9777I
u = 0.428186 0.132966I
a = 1.98389 7.20476I
b = 0.475066 0.996976I
1.97991 2.18754I 20.6628 4.9777I
9
II. I
u
2
=
h−u
2
a+b, u
4
a+u
4
+u
2
a+u
3
+a
2
au+3u
2
+u+2, u
5
+u
4
+2u
3
+u
2
+u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
a
u
2
a
a
7
=
1
u
2
a
5
=
a
u
2
a
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
12
=
u
4
u
2
1
u
4
u
3
u
2
1
a
3
=
u
2
a + a
u
2
a
a
2
=
u
4
+ u
2
a + u
2
+ a u
u
2
a + 1
a
1
=
1
0
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
a u
3
a + u
4
3u
2
a + 5u
3
au + 7u
2
a + 5u + 8
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
7
u
10
c
6
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
8
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
10
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
11
, c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
7
y
10
c
6
, c
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
8
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
9
, c
11
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.219640 0.330957I
b = 0.500000 + 0.866025I
0.329100 + 0.499304I 2.59686 + 1.45733I
u = 0.339110 + 0.822375I
a = 0.323203 + 1.221720I
b = 0.500000 0.866025I
0.32910 3.56046I 6.44749 + 8.37485I
u = 0.339110 0.822375I
a = 1.219640 + 0.330957I
b = 0.500000 0.866025I
0.329100 0.499304I 2.59686 1.45733I
u = 0.339110 0.822375I
a = 0.323203 1.221720I
b = 0.500000 + 0.866025I
0.32910 + 3.56046I 6.44749 8.37485I
u = 0.766826
a = 0.85031 + 1.47278I
b = 0.500000 + 0.866025I
2.40108 + 2.02988I 7.10008 1.25892I
u = 0.766826
a = 0.85031 1.47278I
b = 0.500000 0.866025I
2.40108 2.02988I 7.10008 + 1.25892I
u = 0.455697 + 1.200150I
a = 0.575710 + 0.191698I
b = 0.500000 0.866025I
5.87256 + 2.37095I 6.27578 + 1.37298I
u = 0.455697 + 1.200150I
a = 0.121840 0.594429I
b = 0.500000 + 0.866025I
5.87256 + 6.43072I 11.57979 6.03904I
u = 0.455697 1.200150I
a = 0.575710 0.191698I
b = 0.500000 + 0.866025I
5.87256 2.37095I 6.27578 1.37298I
u = 0.455697 1.200150I
a = 0.121840 + 0.594429I
b = 0.500000 0.866025I
5.87256 6.43072I 11.57979 + 6.03904I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
45
+ 28u
44
+ ··· + 13u 1)
c
2
((u
2
+ u + 1)
5
)(u
45
+ 6u
44
+ ··· + u 1)
c
3
((u
2
u + 1)
5
)(u
45
6u
44
+ ··· + 11u 1)
c
4
, c
7
u
10
(u
45
+ 3u
44
+ ··· 2048u + 1024)
c
5
((u
2
u + 1)
5
)(u
45
+ 6u
44
+ ··· + u 1)
c
6
((u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
)(u
45
+ 3u
44
+ ··· 2u 1)
c
8
((u
5
3u
4
+ 4u
3
u
2
u + 1)
2
)(u
45
+ 9u
44
+ ··· 305892u + 52489)
c
9
((u
5
u
4
2u
3
+ u
2
+ u + 1)
2
)(u
45
+ 3u
44
+ ··· + 8u 1)
c
10
((u
5
u
4
+ 2u
3
u
2
+ u 1)
2
)(u
45
+ 3u
44
+ ··· 2u 1)
c
11
, c
12
((u
5
+ u
4
2u
3
u
2
+ u 1)
2
)(u
45
+ 3u
44
+ ··· + 8u 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
45
16y
44
+ ··· + 2813y 1)
c
2
, c
5
((y
2
+ y + 1)
5
)(y
45
+ 28y
44
+ ··· + 13y 1)
c
3
((y
2
+ y + 1)
5
)(y
45
60y
44
+ ··· + 13y 1)
c
4
, c
7
y
10
(y
45
+ 55y
44
+ ··· 1.25829 × 10
7
y 1048576)
c
6
, c
10
((y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
)(y
45
+ 9y
44
+ ··· 8y 1)
c
8
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
45
+ 37y
44
+ ··· 75656299984y 2755095121)
c
9
, c
11
, c
12
((y
5
5y
4
+ 8y
3
3y
2
y 1)
2
)(y
45
35y
44
+ ··· 8y 1)
15