12n
0016
(K12n
0016
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 10 4 12 6 8 9 11
Solving Sequence
4,7
8
5,10
11 6 3 2 1 9 12
c
7
c
4
c
10
c
6
c
3
c
2
c
1
c
9
c
11
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, 224074u
9
+ 244456u
8
+ ··· + 85463a + 346296,
u
10
+ u
9
7u
8
14u
7
+ 16u
6
+ 17u
5
3u
4
10u
3
3u
2
+ u 1i
I
u
2
= h5.86389 × 10
37
u
19
+ 1.09059 × 10
38
u
18
+ ··· + 1.52045 × 10
41
b 1.97465 × 10
40
,
1.68947 × 10
39
u
19
3.22641 × 10
39
u
18
+ ··· + 1.21636 × 10
42
a 1.00257 × 10
42
,
u
20
+ 2u
19
+ ··· 2048u + 1024i
I
u
3
= hb, u
4
a 2u
3
a 3u
4
u
2
a + 3u
3
+ a
2
+ 3au + 7u
2
5u 4, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
v
1
= ha, 8286v
9
14092v
8
+ ··· + 8095b + 12581,
v
10
v
9
2v
8
19v
7
+ 12v
6
+ 35v
5
+ 50v
4
+ 34v
3
+ 17v
2
+ 5v + 1i
* 4 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hb+u, 224074u
9
+244456u
8
+· · ·+85463a+346296, u
10
+u
9
+· · ·+u1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
2.62188u
9
2.86037u
8
+ ··· + 12.1063u 4.05200
u
a
11
=
2.43179u
9
2.58767u
8
+ ··· + 10.7229u 4.29049
0.0122626u
9
0.0607046u
8
+ ··· 0.892515u + 0.0826088
a
6
=
0.238489u
9
0.0483952u
8
+ ··· 1.43012u 1.62188
u
2
a
3
=
0.367925u
9
0.606110u
8
+ ··· + 3.87427u + 0.559587
0.0122626u
9
+ 0.0607046u
8
+ ··· + 0.892515u 0.0826088
a
2
=
0.404257u
9
0.758316u
8
+ ··· + 4.08826u + 0.692697
0.122310u
9
0.00902145u
8
+ ··· + 0.758071u 0.331594
a
1
=
0.238489u
9
+ 0.0483952u
8
+ ··· + 1.43012u + 1.62188
0.0826088u
9
0.0948715u
8
+ ··· + 0.428583u 0.190094
a
9
=
2.81198u
9
3.13308u
8
+ ··· + 13.4897u 3.81351
u
3
u
a
12
=
1.14164u
9
0.462949u
8
+ ··· 5.42663u 7.69845
0.122310u
9
+ 0.00902145u
8
+ ··· 0.758071u + 0.331594
(ii) Obstruction class = 1
(iii) Cusp Shapes =
765256
85463
u
9
1261184
85463
u
8
+
4740376
85463
u
7
+
14048256
85463
u
6
4533392
85463
u
5
19248384
85463
u
4
7535280
85463
u
3
+
7955648
85463
u
2
+
7424384
85463
u +
490522
85463
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
u
10
+ 5u
9
+ 13u
8
+ 12u
7
12u
6
51u
5
65u
4
44u
3
13u
2
+ u + 1
c
2
, c
5
, c
8
c
11
u
10
+ 3u
9
+ 7u
8
+ 10u
7
+ 12u
6
+ 13u
5
+ 11u
4
+ 10u
3
+ 5u
2
+ 3u + 1
c
3
, c
10
u
10
3u
9
9u
8
+ 36u
7
12u
6
7u
5
23u
4
+ 13u
3
+ 16u
2
+ 3u + 2
c
4
, c
6
, c
7
c
9
u
10
+ u
9
7u
8
14u
7
+ 16u
6
+ 17u
5
3u
4
10u
3
3u
2
+ u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
y
10
+ y
9
+ ··· 27y + 1
c
2
, c
5
, c
8
c
11
y
10
+ 5y
9
+ 13y
8
+ 12y
7
12y
6
51y
5
65y
4
44y
3
13y
2
+ y + 1
c
3
, c
10
y
10
27y
9
+ ··· + 55y + 4
c
4
, c
6
, c
7
c
9
y
10
15y
9
+ ··· + 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.051110 + 0.169733I
a = 0.075124 + 0.218323I
b = 1.051110 0.169733I
6.66754 7.26680I 14.1481 + 8.5135I
u = 1.051110 0.169733I
a = 0.075124 0.218323I
b = 1.051110 + 0.169733I
6.66754 + 7.26680I 14.1481 8.5135I
u = 0.766019
a = 0.342395
b = 0.766019
1.35955 6.41950
u = 0.505971 + 0.548673I
a = 0.308348 + 0.874136I
b = 0.505971 0.548673I
1.23733 + 1.36545I 9.59143 3.61875I
u = 0.505971 0.548673I
a = 0.308348 0.874136I
b = 0.505971 + 0.548673I
1.23733 1.36545I 9.59143 + 3.61875I
u = 0.171353 + 0.321669I
a = 4.31436 + 8.42917I
b = 0.171353 0.321669I
0.16069 3.80568I 19.6494 + 42.7056I
u = 0.171353 0.321669I
a = 4.31436 8.42917I
b = 0.171353 + 0.321669I
0.16069 + 3.80568I 19.6494 42.7056I
u = 2.11995 + 1.24678I
a = 0.704601 + 0.550226I
b = 2.11995 1.24678I
17.3702 + 13.6949I 8.24581 5.79353I
u = 2.11995 1.24678I
a = 0.704601 0.550226I
b = 2.11995 + 1.24678I
17.3702 13.6949I 8.24581 + 5.79353I
u = 2.57293
a = 0.889824
b = 2.57293
13.9598 4.90870
5
II. I
u
2
= h5.86 × 10
37
u
19
+ 1.09 × 10
38
u
18
+ · · · + 1.52 × 10
41
b 1.97 ×
10
40
, 1.69 × 10
39
u
19
3.23 × 10
39
u
18
+ · · · + 1.22 × 10
42
a 1.00 ×
10
42
, u
20
+ 2u
19
+ · · · 2048u + 1024i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
0.00138896u
19
+ 0.00265251u
18
+ ··· + 3.64638u + 0.824235
0.000385667u
19
0.000717282u
18
+ ··· 1.18247u + 0.129872
a
11
=
0.00151255u
19
+ 0.00313681u
18
+ ··· + 3.14973u + 0.822778
0.000451559u
19
0.000899794u
18
+ ··· 0.823414u 0.112935
a
6
=
0.000295502u
19
+ 0.000835151u
18
+ ··· 2.41530u + 0.836394
1.74761 × 10
6
u
19
0.0000459509u
18
+ ··· + 0.619191u + 0.0512561
a
3
=
0.000175793u
19
0.000736748u
18
+ ··· + 3.47292u 1.24551
0.000101127u
19
+ 0.000225173u
18
+ ··· + 0.697375u + 0.189635
a
2
=
0.000515937u
19
0.00143281u
18
+ ··· + 3.99150u 1.66721
0.000576429u
19
+ 0.00110414u
18
+ ··· + 0.494790u + 0.627482
a
1
=
0.000293754u
19
0.000789200u
18
+ ··· + 1.79611u 0.887650
0.000158683u
19
+ 0.000288930u
18
+ ··· + 0.506931u + 0.257788
a
9
=
0.00144125u
19
+ 0.00289745u
18
+ ··· + 2.51554u + 1.04162
0.000525250u
19
0.000988354u
18
+ ··· 1.00784u + 0.125174
a
12
=
0.000756916u
19
+ 0.00212323u
18
+ ··· 1.07571u + 3.13147
0.000291771u
19
0.000735805u
18
+ ··· 0.338968u 0.810783
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00176167u
19
0.00309564u
18
+ ··· 12.6991u 1.09946
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
12
u
20
+ 19u
19
+ ··· + 175u + 1
c
2
, c
5
, c
8
c
11
u
20
+ 5u
19
+ ··· + 5u + 1
c
3
, c
10
u
20
5u
19
+ ··· + 2619u + 641
c
4
, c
6
, c
7
c
9
u
20
+ 2u
19
+ ··· 2048u + 1024
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
12
y
20
29y
19
+ ··· 13889y + 1
c
2
, c
5
, c
8
c
11
y
20
+ 19y
19
+ ··· + 175y + 1
c
3
, c
10
y
20
53y
19
+ ··· + 71819743y + 410881
c
4
, c
6
, c
7
c
9
y
20
50y
19
+ ··· + 4194304y + 1048576
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.804594 + 0.696559I
a = 0.002315 0.280709I
b = 1.396170 0.196408I
4.73849 + 3.00338I 7.64371 3.35763I
u = 0.804594 0.696559I
a = 0.002315 + 0.280709I
b = 1.396170 + 0.196408I
4.73849 3.00338I 7.64371 + 3.35763I
u = 0.257283 + 0.651285I
a = 1.12449 2.84653I
b = 0.257283 + 0.651285I
0.537213 6 1.350198 + 0.10I
u = 0.257283 0.651285I
a = 1.12449 + 2.84653I
b = 0.257283 0.651285I
0.537213 6 1.350198 + 0.10I
u = 1.396170 + 0.196408I
a = 0.160795 + 0.137994I
b = 0.804594 0.696559I
4.73849 + 3.00338I 7.64371 3.35763I
u = 1.396170 0.196408I
a = 0.160795 0.137994I
b = 0.804594 + 0.696559I
4.73849 3.00338I 7.64371 + 3.35763I
u = 0.204722 + 0.532348I
a = 1.241470 + 0.214157I
b = 0.241836 0.217250I
0.35106 + 1.66079I 2.53678 3.96410I
u = 0.204722 0.532348I
a = 1.241470 0.214157I
b = 0.241836 + 0.217250I
0.35106 1.66079I 2.53678 + 3.96410I
u = 0.241836 + 0.217250I
a = 0.42599 + 2.16885I
b = 0.204722 0.532348I
0.35106 + 1.66079I 2.53678 3.96410I
u = 0.241836 0.217250I
a = 0.42599 2.16885I
b = 0.204722 + 0.532348I
0.35106 1.66079I 2.53678 + 3.96410I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.55408 + 2.01462I
a = 0.191665 0.696885I
b = 0.55408 + 2.01462I
4.58401 9.53898 + 0.I
u = 0.55408 2.01462I
a = 0.191665 + 0.696885I
b = 0.55408 2.01462I
4.58401 9.53898 + 0.I
u = 2.55394 + 0.67960I
a = 0.797707 0.266076I
b = 2.56756 + 0.95364I
18.4617 6.7670I 6.82707 + 2.49268I
u = 2.55394 0.67960I
a = 0.797707 + 0.266076I
b = 2.56756 0.95364I
18.4617 + 6.7670I 6.82707 2.49268I
u = 2.56756 + 0.95364I
a = 0.741704 0.329004I
b = 2.55394 + 0.67960I
18.4617 + 6.7670I 6.82707 2.49268I
u = 2.56756 0.95364I
a = 0.741704 + 0.329004I
b = 2.55394 0.67960I
18.4617 6.7670I 6.82707 + 2.49268I
u = 2.62678 + 1.73277I
a = 0.171297 + 0.112997I
b = 2.62678 + 1.73277I
12.4152 9.95005 + 0.I
u = 2.62678 1.73277I
a = 0.171297 0.112997I
b = 2.62678 1.73277I
12.4152 9.95005 + 0.I
u = 3.43049 + 0.37740I
a = 0.605506 + 0.066614I
b = 3.43049 + 0.37740I
15.2909 9.14565 + 0.I
u = 3.43049 0.37740I
a = 0.605506 0.066614I
b = 3.43049 0.37740I
15.2909 9.14565 + 0.I
10
III. I
u
3
= hb, u
4
a 3u
4
+ · · · + a
2
4, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
5
=
u
u
3
+ u
a
10
=
a
0
a
11
=
u
2
a + a
u
4
a
a
6
=
1
0
a
3
=
u
u
a
2
=
u
4
u
2
1
u
4
2u
2
a
1
=
1
u
2
a
9
=
a
0
a
12
=
u
4
+ u
2
a 2u
3
u
2
+ a + 3u
u
4
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
a + 3u
3
a + 3u
4
5u
2
a + u
3
5au 7u
2
a 3u 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
2
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
3
, c
4
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
6
, c
9
u
10
c
7
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
8
, c
10
, c
12
(u
2
+ u + 1)
5
c
11
(u
2
u + 1)
5
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
3
, c
4
, c
7
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
6
, c
9
y
10
c
8
, c
10
, c
11
c
12
(y
2
+ y + 1)
5
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.337181 + 0.584015I
b = 0
2.40108 + 2.02988I 6.80799 1.95361I
u = 1.21774
a = 0.337181 0.584015I
b = 0
2.40108 2.02988I 6.80799 + 1.95361I
u = 0.309916 + 0.549911I
a = 2.50919 + 0.05217I
b = 0
0.32910 + 3.56046I 7.97351 2.70956I
u = 0.309916 + 0.549911I
a = 1.20942 2.19910I
b = 0
0.329100 0.499304I 1.93681 0.71136I
u = 0.309916 0.549911I
a = 2.50919 0.05217I
b = 0
0.32910 3.56046I 7.97351 + 2.70956I
u = 0.309916 0.549911I
a = 1.20942 + 2.19910I
b = 0
0.329100 + 0.499304I 1.93681 + 0.71136I
u = 1.41878 + 0.21917I
a = 0.358089 0.327409I
b = 0
5.87256 6.43072I 8.34383 + 2.96651I
u = 1.41878 + 0.21917I
a = 0.104500 + 0.473819I
b = 0
5.87256 2.37095I 12.81148 + 1.72217I
u = 1.41878 0.21917I
a = 0.358089 + 0.327409I
b = 0
5.87256 + 6.43072I 8.34383 2.96651I
u = 1.41878 0.21917I
a = 0.104500 0.473819I
b = 0
5.87256 + 2.37095I 12.81148 1.72217I
14
IV. I
v
1
= ha, 8286v
9
14092v
8
+ · · · + 8095b + 12581, v
10
v
9
+ · · · + 5v + 1i
(i) Arc colorings
a
4
=
v
0
a
7
=
1
0
a
8
=
1
0
a
5
=
v
0
a
10
=
0
1.02359v
9
+ 1.74083v
8
+ ··· 2.14256v 1.55417
a
11
=
1.02359v
9
1.74083v
8
+ ··· + 2.14256v + 1.55417
1.02359v
9
+ 1.74083v
8
+ ··· 2.14256v 1.55417
a
6
=
1
0.566770v
9
0.910562v
8
+ ··· + 1.12069v 2.46844
a
3
=
0.343792v
9
0.433107v
8
+ ··· + 6.30229v + 0.566770
1.56677v
9
+ 1.91056v
8
+ ··· 18.1207v 2.53156
a
2
=
0.433107v
9
0.556763v
8
+ ··· + 6.45448v + 0.910562
1.56677v
9
+ 1.91056v
8
+ ··· 18.1207v 2.53156
a
1
=
1
0.566770v
9
+ 0.910562v
8
+ ··· 1.12069v + 2.46844
a
9
=
1.02359v
9
+ 1.74083v
8
+ ··· 2.14256v 1.55417
0.515256v
9
+ 0.785300v
8
+ ··· 0.966523v + 2.10241
a
12
=
1.96479v
9
+ 3.18777v
8
+ ··· 3.92341v + 1.99444
1.39802v
9
2.27721v
8
+ ··· + 2.80272v 0.526004
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
4097
1619
v
9
+
9450
1619
v
8
+
1665
1619
v
7
+
67341
1619
v
6
147227
1619
v
5
55323
1619
v
4
14483
1619
v
3
+
69031
1619
v
2
+
28097
1619
v
3358
1619
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
7
u
10
c
6
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
8
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
9
, c
10
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
12
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
7
y
10
c
6
, c
9
, c
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
8
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
12
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.337181 + 0.584015I
a = 0
b = 1.21774
2.40108 + 2.02988I 6.80799 1.95361I
v = 0.337181 0.584015I
a = 0
b = 1.21774
2.40108 2.02988I 6.80799 + 1.95361I
v = 0.104500 + 0.473819I
a = 0
b = 1.41878 0.21917I
5.87256 2.37095I 12.81148 + 1.72217I
v = 0.104500 0.473819I
a = 0
b = 1.41878 + 0.21917I
5.87256 + 2.37095I 12.81148 1.72217I
v = 0.358089 + 0.327409I
a = 0
b = 1.41878 + 0.21917I
5.87256 + 6.43072I 8.34383 2.96651I
v = 0.358089 0.327409I
a = 0
b = 1.41878 0.21917I
5.87256 6.43072I 8.34383 + 2.96651I
v = 1.20942 + 2.19910I
a = 0
b = 0.309916 + 0.549911I
0.32910 3.56046I 7.97351 + 2.70956I
v = 1.20942 2.19910I
a = 0
b = 0.309916 0.549911I
0.32910 + 3.56046I 7.97351 2.70956I
v = 2.50919 + 0.05217I
a = 0
b = 0.309916 0.549911I
0.329100 0.499304I 1.93681 0.71136I
v = 2.50919 0.05217I
a = 0
b = 0.309916 + 0.549911I
0.329100 + 0.499304I 1.93681 + 0.71136I
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
5
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
· (u
10
+ 5u
9
+ 13u
8
+ 12u
7
12u
6
51u
5
65u
4
44u
3
13u
2
+ u + 1)
· (u
20
+ 19u
19
+ ··· + 175u + 1)
c
2
, c
8
(u
2
+ u + 1)
5
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
· (u
10
+ 3u
9
+ 7u
8
+ 10u
7
+ 12u
6
+ 13u
5
+ 11u
4
+ 10u
3
+ 5u
2
+ 3u + 1)
· (u
20
+ 5u
19
+ ··· + 5u + 1)
c
3
(u
2
u + 1)
5
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
· (u
10
3u
9
9u
8
+ 36u
7
12u
6
7u
5
23u
4
+ 13u
3
+ 16u
2
+ 3u + 2)
· (u
20
5u
19
+ ··· + 2619u + 641)
c
4
, c
6
u
10
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
· (u
10
+ u
9
7u
8
14u
7
+ 16u
6
+ 17u
5
3u
4
10u
3
3u
2
+ u 1)
· (u
20
+ 2u
19
+ ··· 2048u + 1024)
c
5
, c
11
(u
2
u + 1)
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
· (u
10
+ 3u
9
+ 7u
8
+ 10u
7
+ 12u
6
+ 13u
5
+ 11u
4
+ 10u
3
+ 5u
2
+ 3u + 1)
· (u
20
+ 5u
19
+ ··· + 5u + 1)
c
7
, c
9
u
10
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
10
+ u
9
7u
8
14u
7
+ 16u
6
+ 17u
5
3u
4
10u
3
3u
2
+ u 1)
· (u
20
+ 2u
19
+ ··· 2048u + 1024)
c
10
(u
2
+ u + 1)
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
10
3u
9
9u
8
+ 36u
7
12u
6
7u
5
23u
4
+ 13u
3
+ 16u
2
+ 3u + 2)
· (u
20
5u
19
+ ··· + 2619u + 641)
c
12
(u
2
+ u + 1)
5
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
2
· (u
10
+ 5u
9
+ 13u
8
+ 12u
7
12u
6
51u
5
65u
4
44u
3
13u
2
+ u + 1)
· (u
20
+ 19u
19
+ ··· + 175u + 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
12
(y
2
+ y + 1)
5
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
10
+ y
9
+ ··· 27y + 1)(y
20
29y
19
+ ··· 13889y + 1)
c
2
, c
5
, c
8
c
11
(y
2
+ y + 1)
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
10
+ 5y
9
+ 13y
8
+ 12y
7
12y
6
51y
5
65y
4
44y
3
13y
2
+ y + 1)
· (y
20
+ 19y
19
+ ··· + 175y + 1)
c
3
, c
10
(y
2
+ y + 1)
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
10
27y
9
+ ··· + 55y + 4)
· (y
20
53y
19
+ ··· + 71819743y + 410881)
c
4
, c
6
, c
7
c
9
y
10
(y
5
5y
4
+ ··· y 1)
2
(y
10
15y
9
+ ··· + 5y + 1)
· (y
20
50y
19
+ ··· + 4194304y + 1048576)
20