12n
0017
(K12n
0017
)
A knot diagram
1
Linearized knot diagam
3 5 6 7 2 9 5 11 6 12 8 10
Solving Sequence
2,6
5 3
1,10
9 7 8 4 12 11
c
5
c
2
c
1
c
9
c
6
c
7
c
4
c
12
c
11
c
3
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.18594 × 10
34
u
52
2.07414 × 10
35
u
51
+ ··· + 1.22009 × 10
34
b + 4.27515 × 10
34
,
5.11228 × 10
32
u
52
1.97357 × 10
33
u
51
+ ··· + 1.82103 × 10
32
a 9.15657 × 10
32
, u
53
+ 5u
52
+ ··· 9u 1i
I
u
2
= h−a
3
u a
3
3a
2
au + 3b + 2a + u + 4, a
4
a
3
u + 3a
3
a
2
u + a
2
4a u 3, u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.19×10
34
u
52
2.07×10
35
u
51
+· · ·+1.22×10
34
b+4.28×10
34
, 5.11×
10
32
u
52
1.97×10
33
u
51
+· · ·+1.82×10
32
a9.16×10
32
, u
53
+5u
52
+· · ·9u1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
10
=
2.80735u
52
+ 10.8376u
51
+ ··· 0.444267u + 5.02822
3.43084u
52
+ 16.9999u
51
+ ··· 34.1145u 3.50395
a
9
=
0.623488u
52
6.16226u
51
+ ··· + 33.6702u + 8.53217
3.43084u
52
+ 16.9999u
51
+ ··· 34.1145u 3.50395
a
7
=
1.75032u
52
0.890320u
51
+ ··· 10.7679u 3.13567
6.83122u
52
35.1862u
51
+ ··· + 71.7880u + 8.58154
a
8
=
1.59554u
52
+ 9.62066u
51
+ ··· 7.98101u 2.41540
1.76578u
52
8.80291u
51
+ ··· + 19.1693u + 2.36325
a
4
=
u
3
u
3
+ u
a
12
=
4.55627u
52
+ 20.9187u
51
+ ··· 49.1860u 2.25218
1.76578u
52
+ 8.80291u
51
+ ··· 19.1693u 2.36325
a
11
=
1.71105u
52
+ 5.75864u
51
+ ··· 19.5378u + 3.68527
2.74059u
52
+ 13.6878u
51
+ ··· 30.0115u 3.36198
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.35104u
52
25.5532u
51
+ ··· + 78.3747u + 11.0743
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 15u
52
+ ··· 9u 1
c
2
, c
5
u
53
+ 5u
52
+ ··· 9u 1
c
3
u
53
5u
52
+ ··· 2302791u 148289
c
4
, c
7
u
53
+ 5u
52
+ ··· 1664u 256
c
6
, c
9
u
53
+ 3u
52
+ ··· 3u 1
c
8
, c
11
u
53
3u
52
+ ··· + 5u 1
c
10
, c
12
u
53
21u
52
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
+ 51y
52
+ ··· 4269y 1
c
2
, c
5
y
53
+ 15y
52
+ ··· 9y 1
c
3
y
53
+ 87y
52
+ ··· 708900293913y 21989627521
c
4
, c
7
y
53
45y
52
+ ··· 606208y 65536
c
6
, c
9
y
53
+ 5y
52
+ ··· y 1
c
8
, c
11
y
53
+ 21y
52
+ ··· y 1
c
10
, c
12
y
53
+ 25y
52
+ ··· 77y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.530308 + 0.891641I
a = 1.41610 2.34002I
b = 0.227413 + 0.365967I
0.156968 + 0.305979I 9.1267 + 31.8061I
u = 0.530308 0.891641I
a = 1.41610 + 2.34002I
b = 0.227413 0.365967I
0.156968 0.305979I 9.1267 31.8061I
u = 0.550027 + 0.789290I
a = 0.66997 + 2.28557I
b = 0.074147 0.510318I
0.47806 + 4.00723I 10.14274 8.52943I
u = 0.550027 0.789290I
a = 0.66997 2.28557I
b = 0.074147 + 0.510318I
0.47806 4.00723I 10.14274 + 8.52943I
u = 0.290660 + 0.872671I
a = 1.38678 1.24113I
b = 0.646642 + 0.233451I
0.90313 + 4.01726I 5.20804 5.06978I
u = 0.290660 0.872671I
a = 1.38678 + 1.24113I
b = 0.646642 0.233451I
0.90313 4.01726I 5.20804 + 5.06978I
u = 1.056180 + 0.236014I
a = 0.594933 0.033166I
b = 0.768107 0.046948I
3.64081 + 3.04661I 13.4424 4.7932I
u = 1.056180 0.236014I
a = 0.594933 + 0.033166I
b = 0.768107 + 0.046948I
3.64081 3.04661I 13.4424 + 4.7932I
u = 0.657790 + 0.921515I
a = 1.023740 + 0.420502I
b = 0.553170 0.255009I
0.62571 + 2.57123I 0
u = 0.657790 0.921515I
a = 1.023740 0.420502I
b = 0.553170 + 0.255009I
0.62571 2.57123I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.169703 + 0.847189I
a = 0.573410 1.128960I
b = 0.220478 + 0.766514I
1.59631 + 1.76854I 2.74640 4.48451I
u = 0.169703 0.847189I
a = 0.573410 + 1.128960I
b = 0.220478 0.766514I
1.59631 1.76854I 2.74640 + 4.48451I
u = 0.359167 + 0.783757I
a = 1.60327 + 0.04327I
b = 0.01818 + 1.50451I
7.06670 + 1.57178I 4.33706 7.74502I
u = 0.359167 0.783757I
a = 1.60327 0.04327I
b = 0.01818 1.50451I
7.06670 1.57178I 4.33706 + 7.74502I
u = 0.409008 + 0.741183I
a = 1.80767 0.00417I
b = 0.22475 1.53329I
6.87601 4.70786I 1.13106 3.85165I
u = 0.409008 0.741183I
a = 1.80767 + 0.00417I
b = 0.22475 + 1.53329I
6.87601 + 4.70786I 1.13106 + 3.85165I
u = 0.923392 + 0.708125I
a = 0.826229 + 0.812255I
b = 1.15258 + 0.92886I
4.90426 + 3.27952I 0
u = 0.923392 0.708125I
a = 0.826229 0.812255I
b = 1.15258 0.92886I
4.90426 3.27952I 0
u = 0.809353 + 0.881663I
a = 0.531942 + 0.908624I
b = 1.20306 + 1.02356I
4.15839 1.32183I 0
u = 0.809353 0.881663I
a = 0.531942 0.908624I
b = 1.20306 1.02356I
4.15839 + 1.32183I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.963077 + 0.716560I
a = 0.748110 0.046980I
b = 0.724122 + 0.163979I
3.13131 + 0.47040I 0
u = 0.963077 0.716560I
a = 0.748110 + 0.046980I
b = 0.724122 0.163979I
3.13131 0.47040I 0
u = 0.848949 + 0.856511I
a = 1.69721 0.38788I
b = 0.99863 + 1.18800I
6.21091 + 1.13505I 0
u = 0.848949 0.856511I
a = 1.69721 + 0.38788I
b = 0.99863 1.18800I
6.21091 1.13505I 0
u = 0.997021 + 0.686901I
a = 0.854814 0.725692I
b = 1.12564 0.93321I
7.01799 + 8.93611I 0
u = 0.997021 0.686901I
a = 0.854814 + 0.725692I
b = 1.12564 + 0.93321I
7.01799 8.93611I 0
u = 0.800905 + 0.909129I
a = 1.72367 + 0.46790I
b = 1.04239 1.19652I
4.07249 4.71363I 0
u = 0.800905 0.909129I
a = 1.72367 0.46790I
b = 1.04239 + 1.19652I
4.07249 + 4.71363I 0
u = 0.190036 + 1.206100I
a = 0.014657 0.532586I
b = 0.543932 + 0.735641I
2.94216 + 2.73108I 0
u = 0.190036 1.206100I
a = 0.014657 + 0.532586I
b = 0.543932 0.735641I
2.94216 2.73108I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.167242 + 0.748310I
a = 1.20707 + 1.23679I
b = 0.772219 0.132719I
1.23355 0.85670I 1.99397 + 0.77147I
u = 0.167242 0.748310I
a = 1.20707 1.23679I
b = 0.772219 + 0.132719I
1.23355 + 0.85670I 1.99397 0.77147I
u = 0.593122 + 1.098860I
a = 0.640887 + 0.592926I
b = 0.568895 0.414061I
0.79815 + 2.64733I 0
u = 0.593122 1.098860I
a = 0.640887 0.592926I
b = 0.568895 + 0.414061I
0.79815 2.64733I 0
u = 0.816554 + 0.945782I
a = 0.448825 0.835890I
b = 1.17212 1.05145I
5.93083 7.33894I 0
u = 0.816554 0.945782I
a = 0.448825 + 0.835890I
b = 1.17212 + 1.05145I
5.93083 + 7.33894I 0
u = 0.938500 + 0.838979I
a = 0.667637 0.761297I
b = 1.15180 0.97924I
11.01260 + 0.70068I 0
u = 0.938500 0.838979I
a = 0.667637 + 0.761297I
b = 1.15180 + 0.97924I
11.01260 0.70068I 0
u = 0.781108 + 1.058600I
a = 1.62355 + 0.62236I
b = 1.09267 1.11554I
3.80915 9.57151I 0
u = 0.781108 1.058600I
a = 1.62355 0.62236I
b = 1.09267 + 1.11554I
3.80915 + 9.57151I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.855619 + 1.002320I
a = 1.61140 0.52084I
b = 1.04937 + 1.13619I
10.48550 7.29514I 0
u = 0.855619 1.002320I
a = 1.61140 + 0.52084I
b = 1.04937 1.13619I
10.48550 + 7.29514I 0
u = 0.276293 + 1.310550I
a = 0.145590 + 0.459150I
b = 0.617657 0.677073I
1.79792 + 7.60628I 0
u = 0.276293 1.310550I
a = 0.145590 0.459150I
b = 0.617657 + 0.677073I
1.79792 7.60628I 0
u = 0.651246
a = 0.347416
b = 0.701762
1.38715 7.24480
u = 0.797265 + 1.097860I
a = 1.57835 0.63310I
b = 1.08229 + 1.09516I
5.7123 15.4835I 0
u = 0.797265 1.097860I
a = 1.57835 + 0.63310I
b = 1.08229 1.09516I
5.7123 + 15.4835I 0
u = 0.884439 + 1.048670I
a = 0.701048 0.259116I
b = 0.705424 + 0.300411I
2.15584 + 6.28914I 0
u = 0.884439 1.048670I
a = 0.701048 + 0.259116I
b = 0.705424 0.300411I
2.15584 6.28914I 0
u = 0.289494 + 0.414333I
a = 1.16272 + 2.27371I
b = 0.033058 0.698327I
0.54607 1.46734I 1.60005 + 1.62915I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.289494 0.414333I
a = 1.16272 2.27371I
b = 0.033058 + 0.698327I
0.54607 + 1.46734I 1.60005 1.62915I
u = 0.107152 + 0.100700I
a = 5.08191 + 0.12392I
b = 0.340195 0.558279I
0.33530 1.50733I 2.98224 + 4.24130I
u = 0.107152 0.100700I
a = 5.08191 0.12392I
b = 0.340195 + 0.558279I
0.33530 + 1.50733I 2.98224 4.24130I
10
II. I
u
2
= h−a
3
u a
3
3a
2
au + 3b + 2a + u + 4, a
4
a
3
u + 3a
3
a
2
u +
a
2
4a u 3, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
1
=
1
0
a
10
=
a
1
3
a
3
u +
1
3
au + ···
2
3
a
4
3
a
9
=
1
3
a
3
u
1
3
au + ··· +
5
3
a +
4
3
1
3
a
3
u +
1
3
au + ···
2
3
a
4
3
a
7
=
1
3
a
3
u
4
3
a
2
u + ··· a
4
3
2
3
a
3
u +
2
3
a
2
u + ··· + a +
5
3
a
8
=
1
3
a
3
u
4
3
a
2
u + ··· a
4
3
2
3
a
3
u +
2
3
a
2
u + ··· + a +
5
3
a
4
=
1
u 1
a
12
=
1
3
a
3
u
2
3
a
2
u + ··· +
4
3
a
2
5
3
2
3
a
3
u +
2
3
a
2
u + ··· + a +
5
3
a
11
=
4
3
a
3
u +
4
3
a
2
u + ··· +
1
3
a
2
+
1
3
1
3
a
3
u
1
3
a
2
u + ··· + a +
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
3
a
3
u +
5
3
a
3
3a
2
u + 4a
2
+
5
3
au
7
3
a
17
3
u +
4
3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
4
, c
7
u
8
c
6
, c
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
8
(u
4
+ u
3
+ u
2
+ 1)
2
c
9
, c
12
(u
4
u
3
+ 3u
2
2u + 1)
2
c
11
(u
4
u
3
+ u
2
+ 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
4
c
4
, c
7
y
8
c
6
, c
9
, c
10
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
c
8
, c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.715307 0.631577I
b = 0.395123 + 0.506844I
0.211005 + 0.614778I 3.64182 4.24446I
u = 0.500000 + 0.866025I
a = 1.248740 + 0.225872I
b = 0.10488 + 1.55249I
6.79074 1.13408I 4.47320 4.89165I
u = 0.500000 + 0.866025I
a = 1.44025 0.04422I
b = 0.10488 1.55249I
6.79074 + 5.19385I 1.68800 11.53835I
u = 0.500000 + 0.866025I
a = 1.59319 + 1.31595I
b = 0.395123 0.506844I
0.21101 + 3.44499I 1.30302 11.36848I
u = 0.500000 0.866025I
a = 0.715307 + 0.631577I
b = 0.395123 0.506844I
0.211005 0.614778I 3.64182 + 4.24446I
u = 0.500000 0.866025I
a = 1.248740 0.225872I
b = 0.10488 1.55249I
6.79074 + 1.13408I 4.47320 + 4.89165I
u = 0.500000 0.866025I
a = 1.44025 + 0.04422I
b = 0.10488 + 1.55249I
6.79074 5.19385I 1.68800 + 11.53835I
u = 0.500000 0.866025I
a = 1.59319 1.31595I
b = 0.395123 + 0.506844I
0.21101 3.44499I 1.30302 + 11.36848I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
53
+ 15u
52
+ ··· 9u 1)
c
2
((u
2
+ u + 1)
4
)(u
53
+ 5u
52
+ ··· 9u 1)
c
3
((u
2
u + 1)
4
)(u
53
5u
52
+ ··· 2302791u 148289)
c
4
, c
7
u
8
(u
53
+ 5u
52
+ ··· 1664u 256)
c
5
((u
2
u + 1)
4
)(u
53
+ 5u
52
+ ··· 9u 1)
c
6
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
53
+ 3u
52
+ ··· 3u 1)
c
8
((u
4
+ u
3
+ u
2
+ 1)
2
)(u
53
3u
52
+ ··· + 5u 1)
c
9
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
53
+ 3u
52
+ ··· 3u 1)
c
10
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
53
21u
52
+ ··· u + 1)
c
11
((u
4
u
3
+ u
2
+ 1)
2
)(u
53
3u
52
+ ··· + 5u 1)
c
12
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
53
21u
52
+ ··· u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
53
+ 51y
52
+ ··· 4269y 1)
c
2
, c
5
((y
2
+ y + 1)
4
)(y
53
+ 15y
52
+ ··· 9y 1)
c
3
((y
2
+ y + 1)
4
)(y
53
+ 87y
52
+ ··· 7.08900 × 10
11
y 2.19896 × 10
10
)
c
4
, c
7
y
8
(y
53
45y
52
+ ··· 606208y 65536)
c
6
, c
9
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
53
+ 5y
52
+ ··· y 1)
c
8
, c
11
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
)(y
53
+ 21y
52
+ ··· y 1)
c
10
, c
12
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
53
+ 25y
52
+ ··· 77y 1)
16