12n
0022
(K12n
0022
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 10 11 5 12 1 9 7
Solving Sequence
9,11
12
5,10
4 8 7 1 6 3 2
c
11
c
9
c
4
c
8
c
7
c
12
c
6
c
3
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2.22558 × 10
224
u
83
+ 1.62605 × 10
225
u
82
+ ··· + 2.32318 × 10
225
b + 2.05431 × 10
225
,
1.34240 × 10
225
u
83
+ 9.14747 × 10
225
u
82
+ ··· + 2.32318 × 10
225
a + 1.22489 × 10
225
, u
84
+ 7u
83
+ ··· + 19u + 1i
I
u
2
= h−u
4
b u
3
b + 2u
4
+ u
2
b + 4u
3
+ b
2
b u + 2, a, u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
3
= h−2a
3
+ b 5a 1, a
4
a
3
+ 3a
2
2a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.23 × 10
224
u
83
+ 1.63 × 10
225
u
82
+ · · · + 2.32 × 10
225
b + 2.05 ×
10
225
, 1.34 × 10
225
u
83
+ 9.15 × 10
225
u
82
+ · · · + 2.32 × 10
225
a + 1.22 ×
10
225
, u
84
+ 7u
83
+ · · · + 19u + 1i
(i) Arc colorings
a
9
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
5
=
0.577827u
83
3.93748u
82
+ ··· 101.647u 0.527248
0.0957989u
83
0.699925u
82
+ ··· 13.0229u 0.884264
a
10
=
u
u
3
+ u
a
4
=
0.577827u
83
3.93748u
82
+ ··· 101.647u 0.527248
0.0821773u
83
0.611145u
82
+ ··· 11.5617u 0.776950
a
8
=
0.982090u
83
+ 6.78620u
82
+ ··· + 125.606u + 9.18920
0.0715056u
83
+ 0.535672u
82
+ ··· + 11.4628u + 1.15633
a
7
=
0.910584u
83
+ 6.25053u
82
+ ··· + 114.143u + 8.03287
0.0715056u
83
+ 0.535672u
82
+ ··· + 11.4628u + 1.15633
a
1
=
0.222432u
83
+ 1.54054u
82
+ ··· + 4.65720u + 4.57953
0.0211304u
83
+ 0.0895277u
82
+ ··· 0.444083u + 0.205948
a
6
=
0.860405u
83
+ 5.98086u
82
+ ··· + 112.669u + 7.91304
0.116676u
83
+ 0.831091u
82
+ ··· + 11.4882u + 1.11809
a
3
=
0.337224u
83
2.15359u
82
+ ··· 80.3989u + 4.87290
0.0485546u
83
0.398974u
82
+ ··· 10.5681u 0.387718
a
2
=
1.01424u
83
6.93488u
82
+ ··· 144.713u 6.43592
0.171241u
83
1.16510u
82
+ ··· 12.7424u 1.08398
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.661245u
83
4.69918u
82
+ ··· 96.1927u 11.9327
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
84
+ 43u
83
+ ··· 18u + 1
c
2
, c
5
u
84
+ 7u
83
+ ··· + 8u + 1
c
3
u
84
7u
83
+ ··· + 18564u + 47236
c
4
, c
8
u
84
+ 2u
83
+ ··· + 3072u + 1024
c
6
u
84
+ u
83
+ ··· 1664u + 101
c
7
u
84
5u
83
+ ··· + 78942u + 33589
c
9
, c
11
u
84
+ 7u
83
+ ··· + 19u + 1
c
10
u
84
13u
83
+ ··· + 104u + 16
c
12
u
84
+ 4u
83
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
84
+ 3y
83
+ ··· 590y + 1
c
2
, c
5
y
84
+ 43y
83
+ ··· 18y + 1
c
3
y
84
37y
83
+ ··· 5800852456y + 2231239696
c
4
, c
8
y
84
50y
83
+ ··· 22020096y + 1048576
c
6
y
84
+ 69y
83
+ ··· 1278338y + 10201
c
7
y
84
+ 85y
83
+ ··· 18778069822y + 1128220921
c
9
, c
11
y
84
49y
83
+ ··· 211y + 1
c
10
y
84
21y
83
+ ··· 19776y + 256
c
12
y
84
24y
83
+ ··· + 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972442 + 0.213795I
a = 1.091770 + 0.371559I
b = 0.06522 + 2.55411I
0.637274 + 0.732588I 0
u = 0.972442 0.213795I
a = 1.091770 0.371559I
b = 0.06522 2.55411I
0.637274 0.732588I 0
u = 1.008760 + 0.011115I
a = 0.356315 0.506244I
b = 4.87249 4.18408I
1.40295 1.45862I 0
u = 1.008760 0.011115I
a = 0.356315 + 0.506244I
b = 4.87249 + 4.18408I
1.40295 + 1.45862I 0
u = 0.910290 + 0.355435I
a = 1.315660 0.399016I
b = 0.02342 2.05906I
4.18720 3.29608I 0
u = 0.910290 0.355435I
a = 1.315660 + 0.399016I
b = 0.02342 + 2.05906I
4.18720 + 3.29608I 0
u = 0.320871 + 0.909040I
a = 1.114210 + 0.444929I
b = 0.125891 + 0.751460I
3.15026 + 4.66896I 0
u = 0.320871 0.909040I
a = 1.114210 0.444929I
b = 0.125891 0.751460I
3.15026 4.66896I 0
u = 0.955077 + 0.022703I
a = 0.04180 + 1.68922I
b = 0.014974 + 0.435556I
8.34326 3.21240I 0
u = 0.955077 0.022703I
a = 0.04180 1.68922I
b = 0.014974 0.435556I
8.34326 + 3.21240I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.924612 + 0.497424I
a = 0.734134 1.203290I
b = 0.236759 0.476931I
1.47667 1.22264I 0
u = 0.924612 0.497424I
a = 0.734134 + 1.203290I
b = 0.236759 + 0.476931I
1.47667 + 1.22264I 0
u = 0.331216 + 0.881361I
a = 0.676599 0.353102I
b = 0.240051 0.675771I
0.20954 + 2.08673I 0
u = 0.331216 0.881361I
a = 0.676599 + 0.353102I
b = 0.240051 + 0.675771I
0.20954 2.08673I 0
u = 0.617703 + 0.685861I
a = 1.34773 1.23740I
b = 0.162497 1.031290I
8.44334 3.92581I 0
u = 0.617703 0.685861I
a = 1.34773 + 1.23740I
b = 0.162497 + 1.031290I
8.44334 + 3.92581I 0
u = 1.079180 + 0.258468I
a = 1.109110 0.542042I
b = 0.36270 2.45765I
3.79074 + 5.18593I 0
u = 1.079180 0.258468I
a = 1.109110 + 0.542042I
b = 0.36270 + 2.45765I
3.79074 5.18593I 0
u = 0.993301 + 0.517113I
a = 0.476198 0.466599I
b = 1.093620 0.529398I
1.55672 + 3.93406I 0
u = 0.993301 0.517113I
a = 0.476198 + 0.466599I
b = 1.093620 + 0.529398I
1.55672 3.93406I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.030100 + 0.473272I
a = 0.752223 + 1.062450I
b = 0.26649 + 1.44063I
2.21135 4.59052I 0
u = 1.030100 0.473272I
a = 0.752223 1.062450I
b = 0.26649 1.44063I
2.21135 + 4.59052I 0
u = 0.858393 + 0.054295I
a = 0.165809 0.777617I
b = 2.21383 0.21187I
0.83780 1.60534I 11.55428 + 0.I
u = 0.858393 0.054295I
a = 0.165809 + 0.777617I
b = 2.21383 + 0.21187I
0.83780 + 1.60534I 11.55428 + 0.I
u = 1.058300 + 0.459470I
a = 1.025540 + 0.596498I
b = 1.05338 + 1.07754I
1.64539 2.41566I 0
u = 1.058300 0.459470I
a = 1.025540 0.596498I
b = 1.05338 1.07754I
1.64539 + 2.41566I 0
u = 1.142540 + 0.177564I
a = 0.337203 + 0.263085I
b = 3.94715 + 2.02247I
2.34989 1.68894I 0
u = 1.142540 0.177564I
a = 0.337203 0.263085I
b = 3.94715 2.02247I
2.34989 + 1.68894I 0
u = 0.935581 + 0.684978I
a = 0.673974 1.122900I
b = 0.10781 1.52966I
7.54628 1.28985I 0
u = 0.935581 0.684978I
a = 0.673974 + 1.122900I
b = 0.10781 + 1.52966I
7.54628 + 1.28985I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.646868 + 0.523459I
a = 1.29135 + 0.69575I
b = 0.171529 + 0.706893I
2.28832 2.96266I 0
u = 0.646868 0.523459I
a = 1.29135 0.69575I
b = 0.171529 0.706893I
2.28832 + 2.96266I 0
u = 1.126650 + 0.469056I
a = 0.586175 + 0.912908I
b = 0.242673 + 0.366478I
2.64295 5.32501I 0
u = 1.126650 0.469056I
a = 0.586175 0.912908I
b = 0.242673 0.366478I
2.64295 + 5.32501I 0
u = 1.142420 + 0.498662I
a = 0.708361 1.021390I
b = 0.32261 1.53994I
4.74130 10.12840I 0
u = 1.142420 0.498662I
a = 0.708361 + 1.021390I
b = 0.32261 + 1.53994I
4.74130 + 10.12840I 0
u = 1.194600 + 0.385549I
a = 0.359098 0.436451I
b = 2.04003 1.89368I
2.92160 + 2.77404I 0
u = 1.194600 0.385549I
a = 0.359098 + 0.436451I
b = 2.04003 + 1.89368I
2.92160 2.77404I 0
u = 0.226720 + 1.234900I
a = 0.522923 0.990090I
b = 0.02217 1.67883I
4.54665 + 5.72043I 0
u = 0.226720 1.234900I
a = 0.522923 + 0.990090I
b = 0.02217 + 1.67883I
4.54665 5.72043I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.153780 + 0.515980I
a = 0.859747 0.652054I
b = 1.11954 1.39330I
2.03077 8.41785I 0
u = 1.153780 0.515980I
a = 0.859747 + 0.652054I
b = 1.11954 + 1.39330I
2.03077 + 8.41785I 0
u = 0.190457 + 0.689630I
a = 0.255146 1.215230I
b = 0.34868 1.70071I
0.72347 + 3.79694I 4.78687 5.26590I
u = 0.190457 0.689630I
a = 0.255146 + 1.215230I
b = 0.34868 + 1.70071I
0.72347 3.79694I 4.78687 + 5.26590I
u = 0.280053 + 0.652017I
a = 1.46834 1.72562I
b = 0.225602 0.904495I
7.27588 + 5.64053I 4.23717 1.44618I
u = 0.280053 0.652017I
a = 1.46834 + 1.72562I
b = 0.225602 + 0.904495I
7.27588 5.64053I 4.23717 + 1.44618I
u = 0.413220 + 1.230540I
a = 0.552234 + 1.040430I
b = 0.04555 + 1.65819I
9.11776 + 1.81197I 0
u = 0.413220 1.230540I
a = 0.552234 1.040430I
b = 0.04555 1.65819I
9.11776 1.81197I 0
u = 1.258140 + 0.371030I
a = 0.447345 + 0.321206I
b = 0.744087 + 0.186455I
2.97676 + 0.06912I 0
u = 1.258140 0.371030I
a = 0.447345 0.321206I
b = 0.744087 0.186455I
2.97676 0.06912I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.173850 + 0.596639I
a = 0.760441 0.817940I
b = 0.321304 0.359548I
0.55121 10.15270I 0
u = 1.173850 0.596639I
a = 0.760441 + 0.817940I
b = 0.321304 + 0.359548I
0.55121 + 10.15270I 0
u = 0.432278 + 0.520555I
a = 1.72365 + 1.42967I
b = 0.019219 + 0.763148I
3.91699 + 0.49402I 1.75716 + 2.00639I
u = 0.432278 0.520555I
a = 1.72365 1.42967I
b = 0.019219 0.763148I
3.91699 0.49402I 1.75716 2.00639I
u = 1.35490
a = 0.339763
b = 0.449694
2.55442 0
u = 0.198732 + 1.355280I
a = 0.556728 + 0.968007I
b = 0.00784 + 1.65359I
7.54281 + 10.87570I 0
u = 0.198732 1.355280I
a = 0.556728 0.968007I
b = 0.00784 1.65359I
7.54281 10.87570I 0
u = 1.24156 + 0.72441I
a = 0.727402 + 0.901724I
b = 0.73376 + 1.74424I
6.44809 8.61020I 0
u = 1.24156 0.72441I
a = 0.727402 0.901724I
b = 0.73376 1.74424I
6.44809 + 8.61020I 0
u = 1.44705 + 0.17137I
a = 0.315816 + 0.194686I
b = 0.118682 + 0.118584I
5.61123 2.65441I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44705 0.17137I
a = 0.315816 0.194686I
b = 0.118682 0.118584I
5.61123 + 2.65441I 0
u = 1.18182 + 0.87280I
a = 0.462410 0.603044I
b = 0.84076 1.49220I
0.99043 + 3.63889I 0
u = 1.18182 0.87280I
a = 0.462410 + 0.603044I
b = 0.84076 + 1.49220I
0.99043 3.63889I 0
u = 1.45343 + 0.26296I
a = 0.344788 + 0.135869I
b = 0.165511 + 0.031545I
5.71423 6.06522I 0
u = 1.45343 0.26296I
a = 0.344788 0.135869I
b = 0.165511 0.031545I
5.71423 + 6.06522I 0
u = 1.32402 + 0.65852I
a = 0.637359 0.834221I
b = 0.86308 1.90054I
1.06531 12.31450I 0
u = 1.32402 0.65852I
a = 0.637359 + 0.834221I
b = 0.86308 + 1.90054I
1.06531 + 12.31450I 0
u = 0.99893 + 1.09943I
a = 0.550292 + 0.618639I
b = 0.56906 + 1.29599I
2.69617 + 0.11948I 0
u = 0.99893 1.09943I
a = 0.550292 0.618639I
b = 0.56906 1.29599I
2.69617 0.11948I 0
u = 0.383297 + 0.340658I
a = 0.66058 + 1.72839I
b = 0.333450 + 1.212380I
0.303408 1.335140I 3.78742 + 3.57340I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.383297 0.340658I
a = 0.66058 1.72839I
b = 0.333450 1.212380I
0.303408 + 1.335140I 3.78742 3.57340I
u = 1.37417 + 0.68442I
a = 0.588585 + 0.869316I
b = 0.79291 + 1.99045I
3.7955 17.8954I 0
u = 1.37417 0.68442I
a = 0.588585 0.869316I
b = 0.79291 1.99045I
3.7955 + 17.8954I 0
u = 0.056966 + 0.445178I
a = 1.48669 + 0.28338I
b = 0.203441 0.603272I
0.081645 + 1.388350I 0.20547 3.77437I
u = 0.056966 0.445178I
a = 1.48669 0.28338I
b = 0.203441 + 0.603272I
0.081645 1.388350I 0.20547 + 3.77437I
u = 1.55444
a = 0.508397
b = 0.418678
2.51357 0
u = 1.30994 + 1.00098I
a = 0.459489 + 0.660570I
b = 0.66060 + 1.60930I
1.81006 + 8.25159I 0
u = 1.30994 1.00098I
a = 0.459489 0.660570I
b = 0.66060 1.60930I
1.81006 8.25159I 0
u = 0.172995 + 0.034028I
a = 1.87202 + 3.59277I
b = 0.345343 0.709443I
0.194651 + 1.319340I 1.46532 4.00362I
u = 0.172995 0.034028I
a = 1.87202 3.59277I
b = 0.345343 + 0.709443I
0.194651 1.319340I 1.46532 + 4.00362I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.82009 + 0.15092I
a = 0.657590 0.068438I
b = 0.287435 0.079406I
0.33247 3.91395I 0
u = 1.82009 0.15092I
a = 0.657590 + 0.068438I
b = 0.287435 + 0.079406I
0.33247 + 3.91395I 0
u = 0.0795493 + 0.0409515I
a = 7.05665 2.72768I
b = 0.405023 0.635618I
0.176677 + 1.378470I 2.64856 4.43072I
u = 0.0795493 0.0409515I
a = 7.05665 + 2.72768I
b = 0.405023 + 0.635618I
0.176677 1.378470I 2.64856 + 4.43072I
13
II. I
u
2
= h−u
4
b + 2u
4
+ · · · b + 2, a, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
9
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
5
=
0
b
a
10
=
u
u
3
+ u
a
4
=
0
b
a
8
=
0
u
a
7
=
u
u
a
1
=
u
4
+ u
2
+ 1
u
4
2u
2
a
6
=
u
4
u
2
1
u
4
+ 2u
2
a
3
=
u
4
b u
3
b 2u
2
b + 3bu b
bu + 2b
a
2
=
u
4
b u
3
b 2u
2
b + 3bu b
u
4
u
3
bu + u
2
+ 2b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
4
b + 5u
3
b u
4
+ 9u
2
b + u
3
6bu 2u
2
+ 6b 7u + 3
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
8
u
10
c
6
, c
10
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
7
, c
9
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
11
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
12
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
8
y
10
c
6
, c
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
7
, c
9
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
12
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0
b = 1.76091 + 3.04998I
2.40108 2.02988I 2.76075 + 10.60420I
u = 1.21774
a = 0
b = 1.76091 3.04998I
2.40108 + 2.02988I 2.76075 10.60420I
u = 0.309916 + 0.549911I
a = 0
b = 0.864485 + 0.518603I
0.329100 0.499304I 2.01870 2.82203I
u = 0.309916 + 0.549911I
a = 0
b = 0.016881 1.007970I
0.32910 + 3.56046I 1.95395 6.01185I
u = 0.309916 0.549911I
a = 0
b = 0.864485 0.518603I
0.329100 + 0.499304I 2.01870 + 2.82203I
u = 0.309916 0.549911I
a = 0
b = 0.016881 + 1.007970I
0.32910 3.56046I 1.95395 + 6.01185I
u = 1.41878 + 0.21917I
a = 0
b = 0.369732 0.377747I
5.87256 6.43072I 6.8570 + 13.9114I
u = 1.41878 + 0.21917I
a = 0
b = 0.512005 0.131324I
5.87256 2.37095I 9.93110 5.20350I
u = 1.41878 0.21917I
a = 0
b = 0.369732 + 0.377747I
5.87256 + 6.43072I 6.8570 13.9114I
u = 1.41878 0.21917I
a = 0
b = 0.512005 + 0.131324I
5.87256 + 2.37095I 9.93110 + 5.20350I
17
III. I
u
3
= h−2a
3
+ b 5a 1, a
4
a
3
+ 3a
2
2a + 1, u 1i
(i) Arc colorings
a
9
=
0
1
a
11
=
1
0
a
12
=
1
1
a
5
=
a
2a
3
+ 5a + 1
a
10
=
1
0
a
4
=
a
2a
3
+ 4a + 1
a
8
=
a
2
2a
3
a
2
+ 5a 1
a
7
=
2a
3
+ 2a
2
5a + 1
2a
3
a
2
+ 5a 1
a
1
=
a
3
+ 3a
2
2a + 1
0
a
6
=
a
2
2a
3
a
2
+ 5a 1
a
3
=
a
3
+ a
2
+ 1
a
3
+ a
2
+ 2a + 3
a
2
=
a
3
+ a
2a
3
a
2
+ 5a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15a
3
+ 3a
2
46a + 36
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
u
3
+ 3u
2
2u + 1
c
2
u
4
u
3
+ u
2
+ 1
c
3
u
4
+ u
3
+ 5u
2
u + 2
c
5
u
4
+ u
3
+ u
2
+ 1
c
6
, c
7
u
4
+ 2u
3
+ 7u
2
+ 5u + 1
c
8
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
9
(u + 1)
4
c
10
u
4
c
11
(u 1)
4
c
12
u
4
+ 5u
3
+ 7u
2
+ 2u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
5
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
3
y
4
+ 9y
3
+ 31y
2
+ 19y + 4
c
6
, c
7
y
4
+ 10y
3
+ 31y
2
11y + 1
c
9
, c
11
(y 1)
4
c
10
y
4
c
12
y
4
11y
3
+ 31y
2
+ 10y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.395123 + 0.506844I
b = 2.48997 + 2.74859I
1.43393 1.41510I 21.1644 23.7210I
u = 1.00000
a = 0.395123 0.506844I
b = 2.48997 2.74859I
1.43393 + 1.41510I 21.1644 + 23.7210I
u = 1.00000
a = 0.10488 + 1.55249I
b = 0.010029 + 0.381188I
8.43568 3.16396I 35.3356 15.0782I
u = 1.00000
a = 0.10488 1.55249I
b = 0.010029 0.381188I
8.43568 + 3.16396I 35.3356 + 15.0782I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
5
)(u
4
u
3
+ 3u
2
2u + 1)(u
84
+ 43u
83
+ ··· 18u + 1)
c
2
((u
2
+ u + 1)
5
)(u
4
u
3
+ u
2
+ 1)(u
84
+ 7u
83
+ ··· + 8u + 1)
c
3
(u
2
u + 1)
5
(u
4
+ u
3
+ 5u
2
u + 2)
· (u
84
7u
83
+ ··· + 18564u + 47236)
c
4
u
10
(u
4
u
3
+ 3u
2
2u + 1)(u
84
+ 2u
83
+ ··· + 3072u + 1024)
c
5
((u
2
u + 1)
5
)(u
4
+ u
3
+ u
2
+ 1)(u
84
+ 7u
83
+ ··· + 8u + 1)
c
6
(u
4
+ 2u
3
+ 7u
2
+ 5u + 1)(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
· (u
84
+ u
83
+ ··· 1664u + 101)
c
7
(u
4
+ 2u
3
+ 7u
2
+ 5u + 1)(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
84
5u
83
+ ··· + 78942u + 33589)
c
8
u
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
84
+ 2u
83
+ ··· + 3072u + 1024)
c
9
((u + 1)
4
)(u
5
u
4
+ ··· + u + 1)
2
(u
84
+ 7u
83
+ ··· + 19u + 1)
c
10
u
4
(u
5
+ u
4
+ ··· + u + 1)
2
(u
84
13u
83
+ ··· + 104u + 16)
c
11
((u 1)
4
)(u
5
+ u
4
+ ··· + u 1)
2
(u
84
+ 7u
83
+ ··· + 19u + 1)
c
12
(u
4
+ 5u
3
+ 7u
2
+ 2u + 1)(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
· (u
84
+ 4u
83
+ ··· + 3u + 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
84
+ 3y
83
+ ··· 590y + 1)
c
2
, c
5
((y
2
+ y + 1)
5
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
84
+ 43y
83
+ ··· 18y + 1)
c
3
(y
2
+ y + 1)
5
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
· (y
84
37y
83
+ ··· 5800852456y + 2231239696)
c
4
, c
8
y
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
84
50y
83
+ ··· 22020096y + 1048576)
c
6
(y
4
+ 10y
3
+ 31y
2
11y + 1)(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
84
+ 69y
83
+ ··· 1278338y + 10201)
c
7
(y
4
+ 10y
3
+ 31y
2
11y + 1)(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
84
+ 85y
83
+ ··· 18778069822y + 1128220921)
c
9
, c
11
(y 1)
4
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
84
49y
83
+ ··· 211y + 1)
c
10
y
4
(y
5
+ 3y
4
+ ··· y 1)
2
(y
84
21y
83
+ ··· 19776y + 256)
c
12
(y
4
11y
3
+ 31y
2
+ 10y + 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
84
24y
83
+ ··· + 11y + 1)
23