12n
0031
(K12n
0031
)
A knot diagram
1
Linearized knot diagam
3 5 6 7 2 9 4 11 12 6 7 10
Solving Sequence
5,7
4
8,12
11 9 6 3 2 1 10
c
4
c
7
c
11
c
8
c
6
c
3
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.28889 × 10
59
u
23
1.73916 × 10
59
u
22
+ ··· + 2.88300 × 10
61
b 2.28440 × 10
62
,
7.35803 × 10
59
u
23
1.22890 × 10
60
u
22
+ ··· + 5.76599 × 10
61
a 1.59769 × 10
63
,
u
24
2u
23
+ ··· 7168u + 1024i
I
u
2
= hu
2
+ b u + 1, u
2
+ a u + 1, u
4
+ u
2
+ u + 1i
I
u
3
= h−2u
5
3u
3
+ u
2
+ b 2u + 2, 2u
5
3u
3
+ u
2
+ a 2u + 2, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
I
v
1
= ha, 1523v
9
+ 2050v
8
+ ··· + 3335b + 8448,
v
10
+ v
9
7v
8
+ 2v
7
+ 58v
6
+ 19v
5
16v
4
7v
3
+ 6v
2
+ 3v + 1i
* 4 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.29×10
59
u
23
1.74×10
59
u
22
+· · ·+2.88×10
61
b2.28×10
62
, 7.36×10
59
u
23
1.23×10
60
u
22
+· · ·+5.77×10
61
a1.60×10
63
, u
24
2u
23
+· · ·7168u+1024i
(i) Arc colorings
a
5
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
0.0127611u
23
+ 0.0213129u
22
+ ··· 146.902u + 27.7088
0.00447065u
23
+ 0.00603249u
22
+ ··· 37.8270u + 7.92371
a
11
=
0.0127611u
23
+ 0.0213129u
22
+ ··· 146.902u + 27.7088
0.00460868u
23
+ 0.00759863u
22
+ ··· 54.9313u + 12.2340
a
9
=
0.0184954u
23
0.0271361u
22
+ ··· + 171.538u 29.5518
0.00880936u
23
0.00909508u
22
+ ··· + 38.6739u 3.95155
a
6
=
0.00328632u
23
0.00596273u
22
+ ··· + 41.3269u 7.17877
0.00508827u
23
+ 0.00785301u
22
+ ··· 54.7848u + 10.3149
a
3
=
0.0000553993u
23
+ 0.0000911467u
22
+ ··· + 0.275591u + 0.984609
0.000298497u
23
+ 0.00144194u
22
+ ··· 10.6087u + 2.48202
a
2
=
0.000353896u
23
0.00135079u
22
+ ··· + 10.8843u 1.49741
0.000298497u
23
+ 0.00144194u
22
+ ··· 10.6087u + 2.48202
a
1
=
0.00774850u
23
0.0135211u
22
+ ··· + 97.1183u 18.1182
0.00446218u
23
0.00755839u
22
+ ··· + 55.7915u 10.9394
a
10
=
0.00105139u
23
+ 0.00330070u
22
+ ··· 27.5679u + 6.56444
0.00223494u
23
0.00266203u
22
+ ··· + 13.7590u 0.614331
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0413329u
23
+ 0.0683918u
22
+ ··· 470.295u + 85.7076
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 3u
23
+ ··· 8u + 1
c
2
, c
5
u
24
+ 7u
23
+ ··· + 4u + 1
c
3
u
24
7u
23
+ ··· + 155372u + 47236
c
4
, c
7
u
24
+ 2u
23
+ ··· + 7168u + 1024
c
6
u
24
4u
23
+ ··· 3u + 1
c
8
u
24
+ u
23
+ ··· 5120u + 1024
c
9
, c
12
u
24
13u
23
+ ··· 2u + 1
c
10
u
24
+ 4u
23
+ ··· 3009503u + 1672193
c
11
u
24
2u
23
+ ··· + 2185u + 1831
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 43y
23
+ ··· + 60y + 1
c
2
, c
5
y
24
+ 3y
23
+ ··· 8y + 1
c
3
y
24
+ 107y
23
+ ··· 359116296y + 2231239696
c
4
, c
7
y
24
30y
23
+ ··· 3145728y + 1048576
c
6
y
24
+ 30y
22
+ ··· + y + 1
c
8
y
24
57y
23
+ ··· 1572864y + 1048576
c
9
, c
12
y
24
27y
23
+ ··· 198y + 1
c
10
y
24
+ 132y
23
+ ··· + 20945455419869y + 2796229429249
c
11
y
24
+ 20y
23
+ ··· + 72680737y + 3352561
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.028680 + 0.626726I
a = 0.533680 0.903018I
b = 0.034700 + 0.150384I
5.30004 + 7.06597I 3.39619 6.37751I
u = 1.028680 0.626726I
a = 0.533680 + 0.903018I
b = 0.034700 0.150384I
5.30004 7.06597I 3.39619 + 6.37751I
u = 0.497474 + 0.507669I
a = 0.361926 + 0.349425I
b = 0.008032 + 0.687395I
0.84077 1.37467I 5.35239 + 4.26754I
u = 0.497474 0.507669I
a = 0.361926 0.349425I
b = 0.008032 0.687395I
0.84077 + 1.37467I 5.35239 4.26754I
u = 0.551207 + 0.395512I
a = 0.685914 + 0.546768I
b = 0.865249 + 1.020670I
0.14272 2.78886I 1.24898 + 0.91559I
u = 0.551207 0.395512I
a = 0.685914 0.546768I
b = 0.865249 1.020670I
0.14272 + 2.78886I 1.24898 0.91559I
u = 0.534930 + 0.187354I
a = 1.80358 + 1.02511I
b = 2.21805 0.06958I
2.26240 + 2.45863I 0.58956 2.80745I
u = 0.534930 0.187354I
a = 1.80358 1.02511I
b = 2.21805 + 0.06958I
2.26240 2.45863I 0.58956 + 2.80745I
u = 0.53073 + 1.35148I
a = 0.444245 + 1.037430I
b = 0.185137 + 0.065890I
5.91731 + 1.32680I 4.55064 0.68264I
u = 0.53073 1.35148I
a = 0.444245 1.037430I
b = 0.185137 0.065890I
5.91731 1.32680I 4.55064 + 0.68264I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.099117 + 0.535999I
a = 1.273020 0.388430I
b = 0.037166 + 0.328529I
0.00212 1.46917I 0.28384 + 4.39333I
u = 0.099117 0.535999I
a = 1.273020 + 0.388430I
b = 0.037166 0.328529I
0.00212 + 1.46917I 0.28384 4.39333I
u = 0.465375 + 0.278294I
a = 0.377175 + 0.887793I
b = 1.55399 + 0.43926I
2.60162 0.06406I 5.33602 1.30009I
u = 0.465375 0.278294I
a = 0.377175 0.887793I
b = 1.55399 0.43926I
2.60162 + 0.06406I 5.33602 + 1.30009I
u = 0.48281 + 2.18987I
a = 1.45037 0.79279I
b = 2.00018 0.40996I
0.03963 1.93559I 3.24137 + 4.51519I
u = 0.48281 2.18987I
a = 1.45037 + 0.79279I
b = 2.00018 + 0.40996I
0.03963 + 1.93559I 3.24137 4.51519I
u = 2.10598 + 1.47278I
a = 0.737984 0.025578I
b = 1.81967 0.11260I
13.6003 6.5164I 0
u = 2.10598 1.47278I
a = 0.737984 + 0.025578I
b = 1.81967 + 0.11260I
13.6003 + 6.5164I 0
u = 2.04936 + 1.71103I
a = 1.027290 + 0.232987I
b = 2.09607 + 0.15606I
13.5215 + 14.1664I 0
u = 2.04936 1.71103I
a = 1.027290 0.232987I
b = 2.09607 0.15606I
13.5215 14.1664I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 3.44120 + 1.32166I
a = 0.751676 + 0.034514I
b = 1.93632 0.01972I
15.2941 1.5620I 0
u = 3.44120 1.32166I
a = 0.751676 0.034514I
b = 1.93632 + 0.01972I
15.2941 + 1.5620I 0
u = 3.35464 + 2.16681I
a = 0.963420 + 0.242424I
b = 1.99558 + 0.06976I
15.6939 6.0170I 0
u = 3.35464 2.16681I
a = 0.963420 0.242424I
b = 1.99558 0.06976I
15.6939 + 6.0170I 0
7
II. I
u
2
= hu
2
+ b u + 1, u
2
+ a u + 1, u
4
+ u
2
+ u + 1i
(i) Arc colorings
a
5
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
u
2
+ u 1
u
2
+ u 1
a
11
=
u
2
+ u 1
u
3
u
2
+ 2u
a
9
=
u
u
3
+ u
a
6
=
u
3
u
2
a
3
=
u
3
+ u
2
+ 1
u
a
2
=
u
3
+ u
2
+ u + 1
u
a
1
=
u
u
3
u
a
10
=
u
2
+ 2u 1
u
3
u
2
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
6u
2
2u 7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
4
2u
3
+ 3u
2
u + 1
c
2
, c
4
u
4
+ u
2
+ u + 1
c
3
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
5
, c
7
u
4
+ u
2
u + 1
c
8
u
4
c
9
(u 1)
4
c
10
, c
11
u
4
u
3
+ 3u
2
2u + 1
c
12
(u + 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
2
, c
4
, c
5
c
7
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
3
y
4
y
3
+ 2y
2
+ 7y + 4
c
8
y
4
c
9
, c
12
(y 1)
4
c
10
, c
11
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 1.50411 + 1.22685I
b = 1.50411 + 1.22685I
0.66484 1.39709I 6.04449 + 2.35025I
u = 0.547424 0.585652I
a = 1.50411 1.22685I
b = 1.50411 1.22685I
0.66484 + 1.39709I 6.04449 2.35025I
u = 0.547424 + 1.120870I
a = 0.504108 0.106312I
b = 0.504108 0.106312I
4.26996 + 7.64338I 0.45551 9.20433I
u = 0.547424 1.120870I
a = 0.504108 + 0.106312I
b = 0.504108 + 0.106312I
4.26996 7.64338I 0.45551 + 9.20433I
11
III. I
u
3
= h−2u
5
3u
3
+ u
2
+ b 2u + 2, 2u
5
3u
3
+ u
2
+ a 2u + 2, u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
12
=
2u
5
+ 3u
3
u
2
+ 2u 2
2u
5
+ 3u
3
u
2
+ 2u 2
a
11
=
2u
5
+ 3u
3
u
2
+ 2u 2
3u
5
u
4
+ 5u
3
3u
2
+ 4u 4
a
9
=
u
u
3
+ u
a
6
=
u
3
u
5
+ u
3
+ u
a
3
=
u
5
+ u
4
2u
3
+ 2u
2
2u + 2
u
5
2u
3
+ u
2
u + 1
a
2
=
u
4
+ u
2
u + 1
u
5
2u
3
+ u
2
u + 1
a
1
=
u
u
3
u
a
10
=
2u
5
+ 3u
3
u
2
+ 3u 2
2u
5
+ 4u
3
u
2
+ 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ u
4
+ 4u
2
+ 3u + 1
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
2
, c
4
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
3
(u
3
u
2
+ 1)
2
c
5
, c
7
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
8
u
6
c
9
(u 1)
6
c
10
, c
11
u
6
2u
3
+ 4u
2
3u + 1
c
12
(u + 1)
6
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
2
, c
4
, c
5
c
7
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
3
(y
3
y
2
+ 2y 1)
2
c
8
y
6
c
9
, c
12
(y 1)
6
c
10
, c
11
y
6
+ 8y
4
2y
3
+ 4y
2
y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.702221 0.130845I
b = 0.702221 0.130845I
1.91067 2.82812I 0.06063 + 4.05868I
u = 0.498832 1.001300I
a = 0.702221 + 0.130845I
b = 0.702221 + 0.130845I
1.91067 + 2.82812I 0.06063 4.05868I
u = 0.284920 + 1.115140I
a = 0.447279 0.479689I
b = 0.447279 0.479689I
6.04826 7.59911 + 2.50363I
u = 0.284920 1.115140I
a = 0.447279 + 0.479689I
b = 0.447279 + 0.479689I
6.04826 7.59911 2.50363I
u = 0.713912 + 0.305839I
a = 0.74506 + 2.00027I
b = 0.74506 + 2.00027I
1.91067 2.82812I 5.15973 + 2.26538I
u = 0.713912 0.305839I
a = 0.74506 2.00027I
b = 0.74506 2.00027I
1.91067 + 2.82812I 5.15973 2.26538I
15
IV. I
v
1
= ha, 1523v
9
+ 2050v
8
+ · · · + 3335b + 8448, v
10
+ v
9
+ · · · + 3v + 1i
(i) Arc colorings
a
5
=
1
0
a
7
=
v
0
a
4
=
1
0
a
8
=
v
0
a
12
=
0
0.456672v
9
0.614693v
8
+ ··· 5.06627v 2.53313
a
11
=
0.158021v
9
0.0569715v
8
+ ··· 0.930735v 0.158021
0.456672v
9
0.614693v
8
+ ··· 5.06627v 2.53313
a
9
=
0.117241v
9
+ 0.133433v
8
+ ··· + 1.47736v + 0.117241
0.125637v
9
+ 0.242879v
8
+ ··· + 2.66207v + 1.33103
a
6
=
0.178111v
9
+ 0.133433v
8
+ ··· + 1.94693v + 0.178111
0.286957v
9
+ 0.347826v
8
+ ··· + 2.57391v + 1.28696
a
3
=
0.0932534v
9
+ 0.700750v
7
+ ··· 0.700750v + 1.44498
0.286957v
9
0.347826v
8
+ ··· 2.57391v 0.286957
a
2
=
0.193703v
9
+ 0.347826v
8
+ ··· + 1.87316v + 1.73193
0.286957v
9
0.347826v
8
+ ··· 2.57391v 0.286957
a
1
=
0.178111v
9
0.133433v
8
+ ··· 1.94693v 0.178111
0.286957v
9
0.347826v
8
+ ··· 2.57391v 1.28696
a
10
=
0.117241v
9
+ 0.133433v
8
+ ··· + 1.47736v + 0.117241
0.286957v
9
0.347826v
8
+ ··· 2.57391v 1.28696
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
6289
3335
v
9
14
23
v
8
+
46278
3335
v
7
43091
3335
v
6
341636
3335
v
5
+
22875
667
v
4
+
72729
3335
v
3
+
5464
3335
v
2
48743
3335
v
1839
3335
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
7
u
10
c
6
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
8
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
9
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
10
, c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
7
y
10
c
6
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
8
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
9
, c
10
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.540263 + 0.316514I
a = 0
b = 1.13119 0.85946I
0.329100 0.499304I 1.95395 + 0.91636I
v = 0.540263 0.316514I
a = 0
b = 1.13119 + 0.85946I
0.329100 + 0.499304I 1.95395 0.91636I
v = 0.544240 + 0.309625I
a = 0
b = 0.17872 + 1.40938I
0.32910 + 3.56046I 2.01870 9.75023I
v = 0.544240 0.309625I
a = 0
b = 0.17872 1.40938I
0.32910 3.56046I 2.01870 + 9.75023I
v = 0.172885 + 0.299445I
a = 0
b = 1.10887 1.92062I
2.40108 2.02988I 2.76075 3.67600I
v = 0.172885 0.299445I
a = 0
b = 1.10887 + 1.92062I
2.40108 + 2.02988I 2.76075 + 3.67600I
v = 2.17384 + 1.62819I
a = 0
b = 0.399195 + 0.253095I
5.87256 + 2.37095I 6.85700 6.98324I
v = 2.17384 1.62819I
a = 0
b = 0.399195 0.253095I
5.87256 2.37095I 6.85700 + 6.98324I
v = 2.49698 + 1.06850I
a = 0
b = 0.019589 0.472260I
5.87256 + 6.43072I 9.93110 1.72471I
v = 2.49698 1.06850I
a = 0
b = 0.019589 + 0.472260I
5.87256 6.43072I 9.93110 + 1.72471I
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
5
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
24
+ 3u
23
+ ··· 8u + 1)
c
2
(u
2
+ u + 1)
5
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
24
+ 7u
23
+ ··· + 4u + 1)
c
3
(u
2
u + 1)
5
(u
3
u
2
+ 1)
2
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)
· (u
24
7u
23
+ ··· + 155372u + 47236)
c
4
u
10
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
24
+ 2u
23
+ ··· + 7168u + 1024)
c
5
(u
2
u + 1)
5
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
24
+ 7u
23
+ ··· + 4u + 1)
c
6
(u
4
2u
3
+ 3u
2
u + 1)(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
· (u
6
3u
5
+ 4u
4
2u
3
+ 1)(u
24
4u
23
+ ··· 3u + 1)
c
7
u
10
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
24
+ 2u
23
+ ··· + 7168u + 1024)
c
8
u
10
(u
5
u
4
+ ··· + u 1)
2
(u
24
+ u
23
+ ··· 5120u + 1024)
c
9
((u 1)
10
)(u
5
+ u
4
+ ··· + u 1)
2
(u
24
13u
23
+ ··· 2u + 1)
c
10
(u
4
u
3
+ 3u
2
2u + 1)(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
6
2u
3
+ 4u
2
3u + 1)(u
24
+ 4u
23
+ ··· 3009503u + 1672193)
c
11
(u
4
u
3
+ 3u
2
2u + 1)(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
· (u
6
2u
3
+ 4u
2
3u + 1)(u
24
2u
23
+ ··· + 2185u + 1831)
c
12
((u + 1)
10
)(u
5
u
4
+ ··· + u + 1)
2
(u
24
13u
23
+ ··· 2u + 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
24
+ 43y
23
+ ··· + 60y + 1)
c
2
, c
5
(y
2
+ y + 1)
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
24
+ 3y
23
+ ··· 8y + 1)
c
3
(y
2
+ y + 1)
5
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
24
+ 107y
23
+ ··· 359116296y + 2231239696)
c
4
, c
7
y
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
24
30y
23
+ ··· 3145728y + 1048576)
c
6
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)(y
24
+ 30y
22
+ ··· + y + 1)
c
8
y
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
24
57y
23
+ ··· 1572864y + 1048576)
c
9
, c
12
(y 1)
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
24
27y
23
+ ··· 198y + 1)
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
6
+ 8y
4
2y
3
+ 4y
2
y + 1)
· (y
24
+ 132y
23
+ ··· + 20945455419869y + 2796229429249)
c
11
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
6
+ 8y
4
2y
3
+ 4y
2
y + 1)
· (y
24
+ 20y
23
+ ··· + 72680737y + 3352561)
21