12n
0033
(K12n
0033
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 11 5 7 1 9 10
Solving Sequence
5,8 9,11
12 4 7 10 1 6 3 2
c
8
c
11
c
4
c
7
c
9
c
12
c
6
c
3
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h9.05330 × 10
317
u
76
+ 1.41320 × 10
318
u
75
+ ··· + 2.50588 × 10
321
b + 5.09891 × 10
321
,
5.10110 × 10
318
u
76
1.08271 × 10
319
u
75
+ ··· + 5.01177 × 10
321
a 7.58939 × 10
322
,
u
77
+ 2u
76
+ ··· + 20480u + 4096i
I
u
2
= h−2u
3
u
2
+ b 5u 1, 3u
3
+ 4u
2
+ a + 8u + 8, u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
v
1
= ha, 164522v
11
+ 355934v
10
+ ··· + 707733b 176501,
v
12
+ 3v
11
+ 3v
10
+ 18v
9
+ 31v
8
29v
7
31v
6
9v
5
+ 19v
4
+ 5v
3
4v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9.05 × 10
317
u
76
+ 1.41 × 10
318
u
75
+ · · · + 2.51 × 10
321
b + 5.10 ×
10
321
, 5.10 × 10
318
u
76
1.08 × 10
319
u
75
+ · · · + 5.01 × 10
321
a 7.59 ×
10
322
, u
77
+ 2u
76
+ · · · + 20480u + 4096i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
0.00101783u
76
+ 0.00216033u
75
+ ··· + 36.5435u + 15.1431
0.000361282u
76
0.000563952u
75
+ ··· 12.2323u 2.03477
a
12
=
0.000855818u
76
+ 0.00185986u
75
+ ··· + 31.0338u + 13.6191
0.000362414u
76
0.000562641u
75
+ ··· 12.0509u 2.13122
a
4
=
u
u
3
+ u
a
7
=
0.00303743u
76
0.00486392u
75
+ ··· 99.2882u 15.0764
0.000239922u
76
0.000649688u
75
+ ··· 15.1615u 6.17114
a
10
=
0.000822714u
76
+ 0.00175824u
75
+ ··· + 32.3423u + 13.8923
0.000210387u
76
0.000333021u
75
+ ··· 8.20005u 1.17725
a
1
=
0.000316716u
76
+ 0.000548963u
75
+ ··· + 6.03001u + 1.86087
8.61974 × 10
6
u
76
0.0000450420u
75
+ ··· 2.08710u 0.369176
a
6
=
0.000325336u
76
+ 0.000594005u
75
+ ··· + 8.11710u + 2.23004
0.0000255950u
76
+ 0.0000821978u
75
+ ··· + 1.91504u + 0.601280
a
3
=
0.0000229625u
76
0.000118674u
75
+ ··· 2.05186u 1.28107
0.0000158254u
76
+ 0.0000361796u
75
+ ··· + 2.94000u + 0.422511
a
2
=
0.0000229625u
76
0.000118674u
75
+ ··· 2.05186u 1.28107
0.0000353440u
76
+ 0.0000721239u
75
+ ··· + 4.52395u + 0.720490
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000265127u
76
+ 0.00273732u
75
+ ··· + 71.8347u + 33.0070
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
77
+ 42u
76
+ ··· 173u 1
c
2
, c
5
u
77
+ 8u
76
+ ··· + 3u + 1
c
3
u
77
8u
76
+ ··· + 2520u + 1732
c
4
, c
8
u
77
+ 2u
76
+ ··· + 20480u + 4096
c
6
u
77
7u
76
+ ··· 18228u 7979
c
7
u
77
u
76
+ ··· + 7631854u 2351327
c
9
u
77
+ 4u
76
+ ··· 3u 1
c
10
, c
12
u
77
7u
76
+ ··· 65u + 1
c
11
u
77
+ 13u
76
+ ··· 200u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
77
6y
76
+ ··· + 13671y 1
c
2
, c
5
y
77
+ 42y
76
+ ··· 173y 1
c
3
y
77
54y
76
+ ··· 552548680y 2999824
c
4
, c
8
y
77
60y
76
+ ··· + 234881024y 16777216
c
6
y
77
77y
76
+ ··· + 2964755496y 63664441
c
7
y
77
9y
76
+ ··· 135685107448604y 5528738660929
c
9
y
77
+ 2y
76
+ ··· 29y 1
c
10
, c
12
y
77
63y
76
+ ··· 2399y 1
c
11
y
77
+ 21y
76
+ ··· + 15168y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.021202 + 0.991505I
a = 0.103805 + 0.681267I
b = 0.387707 + 0.512895I
1.29984 4.81871I 3.73970 + 8.31831I
u = 0.021202 0.991505I
a = 0.103805 0.681267I
b = 0.387707 0.512895I
1.29984 + 4.81871I 3.73970 8.31831I
u = 0.350174 + 0.870277I
a = 1.63705 + 0.66516I
b = 0.136420 + 1.089040I
4.26262 2.29968I 11.37943 + 4.09375I
u = 0.350174 0.870277I
a = 1.63705 0.66516I
b = 0.136420 1.089040I
4.26262 + 2.29968I 11.37943 4.09375I
u = 0.552031 + 0.673417I
a = 1.42607 + 0.68039I
b = 0.151263 0.305259I
3.26120 + 0.96418I 9.85344 3.05224I
u = 0.552031 0.673417I
a = 1.42607 0.68039I
b = 0.151263 + 0.305259I
3.26120 0.96418I 9.85344 + 3.05224I
u = 0.801656 + 0.115028I
a = 1.26895 2.37999I
b = 0.618575 0.439872I
0.77686 3.97780I 2.71090 + 8.29234I
u = 0.801656 0.115028I
a = 1.26895 + 2.37999I
b = 0.618575 + 0.439872I
0.77686 + 3.97780I 2.71090 8.29234I
u = 0.742333 + 0.323629I
a = 0.107625 0.186343I
b = 1.236430 0.155289I
0.963117 0.556760I 4.97972 0.27994I
u = 0.742333 0.323629I
a = 0.107625 + 0.186343I
b = 1.236430 + 0.155289I
0.963117 + 0.556760I 4.97972 + 0.27994I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.000355 + 0.774042I
a = 1.102990 + 0.498400I
b = 0.732884 + 0.304781I
1.18097 + 1.51108I 2.56147 1.04285I
u = 0.000355 0.774042I
a = 1.102990 0.498400I
b = 0.732884 0.304781I
1.18097 1.51108I 2.56147 + 1.04285I
u = 1.241430 + 0.227325I
a = 0.549344 1.064480I
b = 0.517613 1.212150I
2.68140 + 1.19053I 0
u = 1.241430 0.227325I
a = 0.549344 + 1.064480I
b = 0.517613 + 1.212150I
2.68140 1.19053I 0
u = 0.116220 + 0.707665I
a = 0.233959 0.456579I
b = 0.702410 0.390271I
1.17719 + 1.40870I 3.29231 3.00363I
u = 0.116220 0.707665I
a = 0.233959 + 0.456579I
b = 0.702410 + 0.390271I
1.17719 1.40870I 3.29231 + 3.00363I
u = 0.715312 + 0.028489I
a = 2.04561 + 1.88867I
b = 0.654008 + 0.310120I
0.648909 0.975553I 3.60474 0.46426I
u = 0.715312 0.028489I
a = 2.04561 1.88867I
b = 0.654008 0.310120I
0.648909 + 0.975553I 3.60474 + 0.46426I
u = 0.378806 + 0.592823I
a = 1.58189 + 5.75660I
b = 2.79582 0.75309I
1.97793 + 1.35936I 28.8056 39.0048I
u = 0.378806 0.592823I
a = 1.58189 5.75660I
b = 2.79582 + 0.75309I
1.97793 1.35936I 28.8056 + 39.0048I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.556381 + 0.425890I
a = 0.086610 0.285749I
b = 1.045290 0.515035I
1.65009 + 1.91270I 1.87415 + 0.42405I
u = 0.556381 0.425890I
a = 0.086610 + 0.285749I
b = 1.045290 + 0.515035I
1.65009 1.91270I 1.87415 0.42405I
u = 1.33114
a = 1.70526
b = 3.65459
4.62840 0
u = 0.615724 + 0.225295I
a = 0.124878 0.091560I
b = 1.267570 + 0.584855I
0.50082 + 7.43088I 9.83588 3.06441I
u = 0.615724 0.225295I
a = 0.124878 + 0.091560I
b = 1.267570 0.584855I
0.50082 7.43088I 9.83588 + 3.06441I
u = 0.377234 + 0.508733I
a = 0.828760 0.255710I
b = 0.080733 0.346910I
0.22325 + 1.43278I 1.54695 5.02383I
u = 0.377234 0.508733I
a = 0.828760 + 0.255710I
b = 0.080733 + 0.346910I
0.22325 1.43278I 1.54695 + 5.02383I
u = 0.481913 + 0.382313I
a = 0.130464 0.111167I
b = 1.007620 + 0.380876I
0.04977 + 4.23277I 3.74018 11.43224I
u = 0.481913 0.382313I
a = 0.130464 + 0.111167I
b = 1.007620 0.380876I
0.04977 4.23277I 3.74018 + 11.43224I
u = 1.38453 + 0.33788I
a = 0.05988 1.46102I
b = 0.413828 1.035170I
2.94680 5.49032I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.38453 0.33788I
a = 0.05988 + 1.46102I
b = 0.413828 + 1.035170I
2.94680 + 5.49032I 0
u = 0.13459 + 1.43811I
a = 0.0790412 0.0963284I
b = 0.312084 + 1.155850I
3.00179 + 4.56266I 0
u = 0.13459 1.43811I
a = 0.0790412 + 0.0963284I
b = 0.312084 1.155850I
3.00179 4.56266I 0
u = 1.45101 + 0.03574I
a = 0.326600 1.171110I
b = 0.97849 1.54914I
6.59261 2.90185I 0
u = 1.45101 0.03574I
a = 0.326600 + 1.171110I
b = 0.97849 + 1.54914I
6.59261 + 2.90185I 0
u = 1.46452 + 0.10406I
a = 0.560170 0.996722I
b = 0.677729 0.936305I
7.24514 2.22253I 0
u = 1.46452 0.10406I
a = 0.560170 + 0.996722I
b = 0.677729 + 0.936305I
7.24514 + 2.22253I 0
u = 1.47132 + 0.00598I
a = 0.486518 1.083090I
b = 0.427573 1.276420I
3.93524 + 7.62228I 0
u = 1.47132 0.00598I
a = 0.486518 + 1.083090I
b = 0.427573 + 1.276420I
3.93524 7.62228I 0
u = 1.41409 + 0.41604I
a = 0.465625 + 0.947491I
b = 0.22019 + 1.50917I
5.83012 5.98154I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41409 0.41604I
a = 0.465625 0.947491I
b = 0.22019 1.50917I
5.83012 + 5.98154I 0
u = 0.13878 + 1.48672I
a = 0.0825775 0.0176285I
b = 0.507722 + 0.084479I
5.24362 + 3.10833I 0
u = 0.13878 1.48672I
a = 0.0825775 + 0.0176285I
b = 0.507722 0.084479I
5.24362 3.10833I 0
u = 0.424249 + 0.248865I
a = 3.45186 + 6.12062I
b = 0.239118 + 1.076500I
2.15277 + 2.70026I 9.88811 + 8.45872I
u = 0.424249 0.248865I
a = 3.45186 6.12062I
b = 0.239118 1.076500I
2.15277 2.70026I 9.88811 8.45872I
u = 0.345743 + 0.345351I
a = 7.58843 5.09506I
b = 0.97044 1.56022I
1.72233 + 1.49478I 0.6746 41.0959I
u = 0.345743 0.345351I
a = 7.58843 + 5.09506I
b = 0.97044 + 1.56022I
1.72233 1.49478I 0.6746 + 41.0959I
u = 1.50984 + 0.22948I
a = 0.494387 + 0.821666I
b = 0.149288 + 1.166430I
3.74678 1.39146I 0
u = 1.50984 0.22948I
a = 0.494387 0.821666I
b = 0.149288 1.166430I
3.74678 + 1.39146I 0
u = 1.52087 + 0.23706I
a = 1.228330 + 0.361231I
b = 3.79275 0.22832I
8.26886 4.60408I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52087 0.23706I
a = 1.228330 0.361231I
b = 3.79275 + 0.22832I
8.26886 + 4.60408I 0
u = 1.56389 + 0.08723I
a = 0.259742 + 1.214440I
b = 0.104963 + 1.054650I
7.30971 + 1.30866I 0
u = 1.56389 0.08723I
a = 0.259742 1.214440I
b = 0.104963 1.054650I
7.30971 1.30866I 0
u = 1.50572 + 0.51745I
a = 0.130706 + 1.317800I
b = 0.499801 + 1.227290I
6.14031 + 10.62530I 0
u = 1.50572 0.51745I
a = 0.130706 1.317800I
b = 0.499801 1.227290I
6.14031 10.62530I 0
u = 0.16466 + 1.59990I
a = 0.0829607 + 0.0868689I
b = 0.54188 1.50526I
6.96276 9.17383I 0
u = 0.16466 1.59990I
a = 0.0829607 0.0868689I
b = 0.54188 + 1.50526I
6.96276 + 9.17383I 0
u = 1.64354 + 0.14674I
a = 0.270112 0.961040I
b = 0.712679 1.188220I
11.25600 + 2.45702I 0
u = 1.64354 0.14674I
a = 0.270112 + 0.961040I
b = 0.712679 + 1.188220I
11.25600 2.45702I 0
u = 1.61779 + 0.33663I
a = 0.587986 + 0.737457I
b = 0.885746 + 0.815817I
10.89770 + 7.17611I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61779 0.33663I
a = 0.587986 0.737457I
b = 0.885746 0.815817I
10.89770 7.17611I 0
u = 0.230559 + 0.235592I
a = 3.02477 + 1.23710I
b = 0.540667 0.856079I
1.89908 + 0.79590I 4.83770 + 0.82015I
u = 0.230559 0.235592I
a = 3.02477 1.23710I
b = 0.540667 + 0.856079I
1.89908 0.79590I 4.83770 0.82015I
u = 1.55975 + 0.62424I
a = 0.180055 + 1.270440I
b = 1.03678 + 1.64077I
8.2935 11.7637I 0
u = 1.55975 0.62424I
a = 0.180055 1.270440I
b = 1.03678 1.64077I
8.2935 + 11.7637I 0
u = 0.33491 + 1.65140I
a = 0.0714856 + 0.0919876I
b = 0.096733 1.280030I
6.64004 + 0.42401I 0
u = 0.33491 1.65140I
a = 0.0714856 0.0919876I
b = 0.096733 + 1.280030I
6.64004 0.42401I 0
u = 1.55571 + 0.78921I
a = 0.332435 1.219240I
b = 1.20704 1.68387I
11.3053 + 17.4741I 0
u = 1.55571 0.78921I
a = 0.332435 + 1.219240I
b = 1.20704 + 1.68387I
11.3053 17.4741I 0
u = 1.62516 + 0.70906I
a = 0.256645 + 0.724429I
b = 0.741895 + 1.089960I
7.62809 + 3.43602I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62516 0.70906I
a = 0.256645 0.724429I
b = 0.741895 1.089960I
7.62809 3.43602I 0
u = 1.60150 + 0.85618I
a = 0.277862 0.757459I
b = 0.97993 1.06878I
10.63730 9.31613I 0
u = 1.60150 0.85618I
a = 0.277862 + 0.757459I
b = 0.97993 + 1.06878I
10.63730 + 9.31613I 0
u = 1.79507 + 0.49521I
a = 0.054400 1.080970I
b = 0.82388 1.84808I
13.6570 + 7.5061I 0
u = 1.79507 0.49521I
a = 0.054400 + 1.080970I
b = 0.82388 + 1.84808I
13.6570 7.5061I 0
u = 1.83627 + 0.59317I
a = 0.271123 0.724908I
b = 0.58068 1.45335I
13.24420 + 0.87431I 0
u = 1.83627 0.59317I
a = 0.271123 + 0.724908I
b = 0.58068 + 1.45335I
13.24420 0.87431I 0
12
II.
I
u
2
= h−2u
3
u
2
+ b 5u 1, 3u
3
+ 4u
2
+ a + 8u + 8 , u
4
+ u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
3u
3
4u
2
8u 8
2u
3
+ u
2
+ 5u + 1
a
12
=
3u
3
4u
2
8u 8
2u
3
+ u
2
+ 5u + 1
a
4
=
u
u
3
+ u
a
7
=
8u
3
19u + 5
3u
3
4u
2
8u 8
a
10
=
3u
3
3u
2
8u 7
2u
3
+ 2u
2
+ 5u + 1
a
1
=
u
2
1
u
2
a
6
=
1
0
a
3
=
u
3
+ 2u
u
3
+ u
a
2
=
u
3
+ 2u
u
3
+ u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 23u
3
11u
2
70u 48
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
u
3
+ 3u
2
2u + 1
c
2
u
4
u
3
+ u
2
+ 1
c
3
u
4
+ u
3
+ 5u
2
u + 2
c
5
u
4
+ u
3
+ u
2
+ 1
c
6
, c
7
u
4
+ 2u
3
+ 7u
2
+ 5u + 1
c
8
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
9
u
4
5u
3
+ 7u
2
2u + 1
c
10
(u 1)
4
c
11
u
4
c
12
(u + 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
5
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
3
y
4
+ 9y
3
+ 31y
2
+ 19y + 4
c
6
, c
7
y
4
+ 10y
3
+ 31y
2
11y + 1
c
9
y
4
11y
3
+ 31y
2
+ 10y + 1
c
10
, c
12
(y 1)
4
c
11
y
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 5.16441 2.77418I
b = 0.59074 + 2.34806I
1.85594 + 1.41510I 24.8178 33.5385I
u = 0.395123 0.506844I
a = 5.16441 + 2.77418I
b = 0.59074 2.34806I
1.85594 1.41510I 24.8178 + 33.5385I
u = 0.10488 + 1.55249I
a = 0.164409 0.045467I
b = 0.409261 + 0.055548I
5.14581 + 3.16396I 31.6822 20.2078I
u = 0.10488 1.55249I
a = 0.164409 + 0.045467I
b = 0.409261 0.055548I
5.14581 3.16396I 31.6822 + 20.2078I
16
III. I
v
1
= ha, 1.65 × 10
5
v
11
+ 3.56 × 10
5
v
10
+ · · · + 7.08 × 10
5
b 1.77 ×
10
5
, v
12
+ 3v
11
+ · · · + v + 1i
(i) Arc colorings
a
5
=
v
0
a
8
=
1
0
a
9
=
1
0
a
11
=
0
0.232463v
11
0.502921v
10
+ ··· + 0.152902v + 0.249389
a
12
=
0.232463v
11
0.502921v
10
+ ··· + 0.152902v + 0.249389
0.232463v
11
0.502921v
10
+ ··· + 0.152902v + 0.249389
a
4
=
v
0
a
7
=
1
1.04198v
11
2.90360v
10
+ ··· + 1.23849v 0.574544
a
10
=
1.04198v
11
+ 2.90360v
10
+ ··· 1.23849v + 1.57454
1.86146v
11
+ 5.23525v
10
+ ··· 2.25349v + 3.04348
a
1
=
0.819476v
11
+ 2.33165v
10
+ ··· 1.01499v + 1.46894
1.86146v
11
+ 5.23525v
10
+ ··· 2.25349v + 3.04348
a
6
=
0.819476v
11
2.33165v
10
+ ··· + 1.01499v 1.46894
1.86146v
11
5.23525v
10
+ ··· + 2.25349v 3.04348
a
3
=
0.529427v
11
+ 1.38124v
10
+ ··· + 1.20984v + 1.24074
0.861460v
11
+ 2.23525v
10
+ ··· + 1.74651v + 2.04348
a
2
=
0.137987v
11
+ 0.235197v
10
+ ··· + 1.72218v + 0.891609
0.861460v
11
+ 2.23525v
10
+ ··· + 1.74651v + 2.04348
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1558019
235911
v
11
+
3765626
235911
v
10
+ ···
4340683
235911
v +
3615109
235911
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
4
, c
8
u
12
c
6
, c
9
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
c
7
, c
12
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
10
, c
11
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
6
c
4
, c
8
y
12
c
6
, c
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
c
7
, c
10
, c
11
c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.834826 + 0.083652I
a = 0
b = 1.002190 + 0.295542I
1.89061 + 1.10558I 3.79900 2.81207I
v = 0.834826 0.083652I
a = 0
b = 1.002190 0.295542I
1.89061 1.10558I 3.79900 + 2.81207I
v = 0.489858 + 0.681154I
a = 0
b = 1.002190 + 0.295542I
1.89061 2.95419I 1.04064 + 4.93773I
v = 0.489858 0.681154I
a = 0
b = 1.002190 0.295542I
1.89061 + 2.95419I 1.04064 4.93773I
v = 0.458424 + 0.081263I
a = 0
b = 1.073950 0.558752I
7.72290I 2.53591 + 10.48596I
v = 0.458424 0.081263I
a = 0
b = 1.073950 + 0.558752I
7.72290I 2.53591 10.48596I
v = 0.299588 + 0.356375I
a = 0
b = 1.073950 0.558752I
3.66314I 2.83009 2.28483I
v = 0.299588 0.356375I
a = 0
b = 1.073950 + 0.558752I
3.66314I 2.83009 + 2.28483I
v = 2.51133 + 0.49706I
a = 0
b = 0.428243 0.664531I
1.89061 + 2.95419I 0.48408 6.69677I
v = 2.51133 0.49706I
a = 0
b = 0.428243 + 0.664531I
1.89061 2.95419I 0.48408 + 6.69677I
20
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.82520 + 2.42341I
a = 0
b = 0.428243 + 0.664531I
1.89061 + 1.10558I 11.02954 + 1.23660I
v = 0.82520 2.42341I
a = 0
b = 0.428243 0.664531I
1.89061 1.10558I 11.02954 1.23660I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
4
u
3
+ 3u
2
2u + 1)(u
77
+ 42u
76
+ ··· 173u 1)
c
2
((u
2
+ u + 1)
6
)(u
4
u
3
+ u
2
+ 1)(u
77
+ 8u
76
+ ··· + 3u + 1)
c
3
((u
2
u + 1)
6
)(u
4
+ u
3
+ 5u
2
u + 2)(u
77
8u
76
+ ··· + 2520u + 1732)
c
4
u
12
(u
4
u
3
+ 3u
2
2u + 1)(u
77
+ 2u
76
+ ··· + 20480u + 4096)
c
5
((u
2
u + 1)
6
)(u
4
+ u
3
+ u
2
+ 1)(u
77
+ 8u
76
+ ··· + 3u + 1)
c
6
(u
4
+ 2u
3
+ 7u
2
+ 5u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
77
7u
76
+ ··· 18228u 7979)
c
7
(u
4
+ 2u
3
+ 7u
2
+ 5u + 1)(u
6
u
5
u
4
+ 2u
3
u + 1)
2
· (u
77
u
76
+ ··· + 7631854u 2351327)
c
8
u
12
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
77
+ 2u
76
+ ··· + 20480u + 4096)
c
9
(u
4
5u
3
+ 7u
2
2u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
· (u
77
+ 4u
76
+ ··· 3u 1)
c
10
((u 1)
4
)(u
6
+ u
5
+ ··· + u + 1)
2
(u
77
7u
76
+ ··· 65u + 1)
c
11
u
4
(u
6
+ u
5
+ ··· + u + 1)
2
(u
77
+ 13u
76
+ ··· 200u 16)
c
12
((u + 1)
4
)(u
6
u
5
+ ··· u + 1)
2
(u
77
7u
76
+ ··· 65u + 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
77
6y
76
+ ··· + 13671y 1)
c
2
, c
5
((y
2
+ y + 1)
6
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
77
+ 42y
76
+ ··· 173y 1)
c
3
(y
2
+ y + 1)
6
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)
· (y
77
54y
76
+ ··· 552548680y 2999824)
c
4
, c
8
y
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
77
60y
76
+ ··· + 234881024y 16777216)
c
6
(y
4
+ 10y
3
+ 31y
2
11y + 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
77
77y
76
+ ··· + 2964755496y 63664441)
c
7
(y
4
+ 10y
3
+ 31y
2
11y + 1)(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
77
9y
76
+ ··· 135685107448604y 5528738660929)
c
9
(y
4
11y
3
+ 31y
2
+ 10y + 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
77
+ 2y
76
+ ··· 29y 1)
c
10
, c
12
(y 1)
4
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
77
63y
76
+ ··· 2399y 1)
c
11
y
4
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
77
+ 21y
76
+ ··· + 15168y 256)
23